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ABSTRACT
Characterising the in situ stress state is important for all underground engineering projects, but is particularly so for 
safety-critical projects such as nuclear waste repositories. Although extensive campaigns are often mounted to robustly 
determine the in situ stress state, preliminary estimates may be apply the simple assumption that the state of stress is related
to depth below ground. Such estimates are usually based on linear regression of principal stress magnitudes with depth, but 
as this ignores the tensorial nature of stress they are, strictly, incorrect. In this paper, we use Bayesian linear regression of 
stress components to obtain estimates of mean stress components and hence magnitudes and orientations of principal 
stresses. together with the uncertainty associated with these. The analysis is performed using over 100 overcoring data 
obtained at a potential nuclear waste repository site in granite in Sweden.

RÉSUMÉ
La caractérisation de l'état des contraintes in situ à une profondeur cible est importante pour tous les projets d'ingénierie
souterrains, mais particulièrement critique pour les projets sensibles tels que les sites de stockage nucléaires. Même si des
campagnes extensives sont souvent lancées dans le but d'estimer les contraintes in situ, les analyses préliminaires peuvent
être  basées  sur  la  simple  supposition  d'une  relation  entre  l'état  des  contraintes  et  la  profondeur.  Les  estimations
préliminaires  basées  sur  la  régression  présument  souvent  une  relation  linéaire  entre  les  contraintes  principales  et  la
profondeur, parfois en incluant l'orientation des contraintes principales. Comme ces méthodes ne respectent pas la nature
tensorielle  des  contraintes,  strictement,  elles  sont  incorrectes.  Pour  cet  article,  nous  utilisons  la  régression  linéaire
bayésienne des composantes des contraintes pour faire l'estimation des valeurs moyennes ainsi que l'incertitude reliée à ces
valeurs. Par la suite, nous indiquons comment la régression des valeurs moyennes et des intervalles de crédibilité peut être
utilisée pour estimer l'incertitude de l'état des contraintes, en ce qui concerne les composantes cartésiennes, ainsi que les
contraintes  principales  (orientations  et  magnitudes).  L'analyse  est  réalisée  en  utilisant  plus  de  100  échantillons  de
surcarottage en granite obtenus d'un site de stockage potentiel en Suède.

1 INTRODUCTION

In situ  stress in rock is a key parameter in the design of
underground  structures,  and  is  particularly  significant  for
sensitive structures such as nuclear waste repositories. As a
3D stress  state  is  defined  by  six  distinct  components  of
stress,  characterisation  of  in  situ  stress  is  more  complex
than characterisation of  scalar properties routinely used in
rock mechanics and rock engineering. To date, there are no
universally agreed and robust statistical methods to quantify
variability and uncertainty in in situ stress measurements for
the purpose of rock engineering design. 

Direct  methods  of  in  situ  stress  measurement  (e.g.
hydraulic  fracturing,  CSIRO  overcoring  method)  are
expensive  to  perform,  and  indirect  methods  of  stress
estimation  do  not  generate  reliable  estimates  of  the

complete stress state (Amadei & Stephansson 1997; Zang
& Stephansson 2010).  Consequently,  large datasets of  in
situ  stress  measurements  in  rock  are  generally  only
obtained on specialized and critical projects such as nuclear
waste repositories.

A commonly held assumption is that the state of stress
in rock is significantly correlated with depth below ground
surface,  and  thus  linear  regression  of  magnitudes  of
principal  stresses  against  depth  are  often  found in  rock
engineering  literature.  However,  such  regression methods
that  process  principal  stress  magnitudes  are  strictly
incorrect  as  they  ignore  the  orientations  of  principal
stresses,  and  thus  violate the  tensorial  nature  of  stress.
Therefore, complete characterisation of the uncertainty in in
situ stress is not possible with these simplified regression
methods.



Ordinary least squares regression obtains the maximum
likelihood  estimate  of  regression  parameters  (e.g.  rate  of
stress  increase  with  depth),  and  assumes  there  is  no
uncertainty  in  these.  Conversely,  Bayesian  regression
explicitly  recognizes  that  such  parameters  are  uncertain,
and  thus  determines  distributions – rather  than  single
values – for them. In this paper, we present Bayesian linear
regression analyses against  depth of over 100 overcoring
stress data obtained at  the SKB Forsmark nuclear  waste
repository  site  in  Sweden.  The  regression  is  performed
using  Cartesian  stress  components  which  honour  the
tensorial  nature  of  stress.  We  also  demonstrate,  using
informative priors, the benefit that Bayesian methods bring
in being able to rationally incorporate prior knowledge.

2 BACKGROUND

2.1 Regression of principal stress magnitudes

As stress is a tensor it cannot be represented by principal
stress  magnitudes  alone,  as these  do  not  contain  any
information  on  principal  stress orientations.  However,
regression of principal magnitudes against depth continues
to  regularly  appear in the rock engineering literature. Two
such  examples  are  shown  in  Figure  1,  and  these
demonstrate that such scalar regressions have been in use
for over forty years.  Such regression can only be correct if
principal  stress  orientations  are  invariant  with  depth,  a
severe constraint that is seldom, if ever, recognized in the
literature.

2.2 Bayesian stress model

Gao & Harrison (2016; 2017; 2018) proposed a frequentist
multivariate  model  to  characterise  the  variability  of  in situ
stress.  This  model  is  tensorial,  but suffers from requiring  a
large number of in situ stress measurements to converge to
stable  values of  statistical  parameters such as mean and
dispersion.  To  overcome this  limitation,  Feng  &  Harrison
proposed a Bayesian stress model (Feng & Harrison 2019;
Feng et al. 2020; Feng et al. 2021).

The  Bayesian  stress  model  assumes  that  the  in situ
stress  data,  Ydata = [σx τxy τ xz σ y τyz σ z ] ,  follow  a
multivariate normal distribution of

Ydata ∼ MVN (μ , Ω) , [1]

with prior distributions of

μ∼MVN(μ0 ,Ω0) , [2]

and

Ω−1∼Wishart(S ,v). [3]

Equations 2 and 3 show that the prior distributions have
their own parameters μ0 , Ω0 , S and v ; these are the mean

stress vector, the covariance matrix, the Wishart distribution
scale matrix and the degrees of freedom, respectively.

Figure  1.  (a)  1978  example  of  vertical  stress  regression
against  depth  (after  Brown  &  Hoek  1978)  and  (b)  2021
example of  regressing pore pressure,  minimum horizontal
and vertical stresses (after Shi et al. 2021)

In this paper we present a Bayesian linear regression for
estimation of the mean stress vector μ0  at any given depth,
which honours the tensorial nature of stress and thus allows
uncertainty  in  both  the  magnitudes  and  orientations  of
principal stresses to be obtained and characterized.

2.3 Bayesian linear regression

The  Bayesian  linear  regression  model  can  be  written  in
generalized form as (Lunn et al. 2012)



y i  ~ Normal (μi , ω
2) [4]

with

μi=β0+∑
k =1

p

βk xki [5]

Here,  y i  is  the  response  variable  (also  known  as  the
dependent variable) consisting of i  data points, xki  is the
explanatory  variable  (also  known  as  the  independent
variable)  comprising  k  multivariate  quantities  of  interest,
μi  is the mean relation between the variables of  interest

obtained by linear regression, β0  and βk  are the intercepts
and gradients respectively for the k  quantities, and ω2  is
the variance around the mean regression line.  The same
value  of  variance is  assumed to  apply  to  all  data,  which
represents the condition of homoscedasticity.

One  significant  advantage  of  a  Bayesian  approach  is
that  it uses  additional information  in  the  form  of  prior
distributions  to  augment  limited  measured  values.  In  the
above Bayesian linear regression model prior distributions
for  β0 , βk  and  ω  are  required,  and  these  will  be
discussed in the next section.

3 METHODOLOGY

3.1 Bayesian linear regression of in situ stress

We  present  a  Bayesian  linear  regression  of  115  in situ
stress data against depth below ground surface. These data
were obtained at the SKB Forsmark site in Sweden, using
overcoring  measurement  techniques,  and  comprise  six
distinct components of stress that are referred to arbitrarily
selected Cartesian axes of x=East, y=North and z=Up.

The Bayesian stress model is

Yij∼ Normal (μij , κ j) , [6]

where

μij=β0 j+β j zi , [7]

with

β0 j = [β01
β02

β03
β04

β05
β06 ]

T

= [β0σ
x

β0τ
xy

β0τ
xz

β0σ
y

β0 τ
yz

β0σ
z
]T

[8]

and

β j= [βσ x
βτ xy βτxz βσ y

βτ yz βσ z ] j
T . [9]

The  six  distinct  Cartesian  stress  components  are
individually regressed against depth below ground surface
z  in  this  regression  model,  and  thus  are  regarded  as

independent response variables as shown in equations 7–9.
We assume σz ,  τxz  and τyz  have magnitudes of zero at
the ground surface, with the result that  β0σz

=β0τ xz
=β0τyz

=0 .

We  have  performed  Bayesian  linear  regression  analyses
using firstly uninformative priors, and then informative priors
as explained in the following subsections.

3.1.1 Uninformative priors

Uninformative  priors  are often used in  Bayesian statistics
when we have no prior  knowledge or a strong belief about
the parameters of  interest.  For  the case  of  uninformative
priors, we have used

β0 j {~ Normal (0 , 0.0001) if j ∈(1,2,4)
0 otherwise

[10]

and

β j∼ Normal (0 , 0.0001) . [11]

For the precision parameter κ j  (the reciprocal of variance)
we have used the uninformative priors

κ j=1 /ω j
2∼Gamma (0.0001 , 0.0001) , [12]

where ω j  is the standard deviation of the j-th parameter of
μij .

3.1.2 Informative priors

The following Informative priors have been adopted for βσ z
,

βτ xz  and βτ yz :

βσ z
∼ Normal (0.026 , 1.0 E+ 06) , [13]

βτ xz∼ Normal (0 , 1.0 E+ 06 ) , [14]

βτ yz∼ Normal (0 , 1.0 E +06) . [15]

These priors reflect our increased belief in the reduced
variability  of  the  stress  components  σz ,  τxz  and  τyz .
Priors  on  all  the  remaining  regression  parameters  are
uninformative as explained earlier in subsection 3.1.1.

The mean unit  weight  of  0.026 MN/m3 in  equation  13
corresponds  to  a  mean  rock  density  of  2650 kg/m3 as
determined  from  laboratory  tests,  and  the  precision  of
1.0E +06 corresponds to an assumed standard deviation of
0.001 MN/m3 in the mean unit weight.



The  flat  ground  surface  at  the  SKB  Forsmark  site
suggests  that  one  of  the  three  principal  stresses  will  be
vertical,  which implies that  both  βτ xz  and  βτ yz  should  be
zero;  this is incorporated in equations 14 and 15 through
use of a mean value of zero.

The posterior distributions of the regression parameters
β0 j ,  β j  and  κ j  were  obtained  by  performing  10,000

MCMC  (Markov  Chain  Monte  Carlo)  simulations  in  the
OpenBUGS  software,  with  all  pre-  and  post-processing
carried out in R programming language.

3.2 Monte Carlo simulation

The MCMC samples of posterior distributions of  β0 j  and
β j  were subsequently substituted into equation 7 to obtain

distributions of the mean of Cartesian stress components at
selected  depths  in  the  interval  0  to  600m.  These
distributions  were  then  randomly  sampled  to  generate
10,000 random stress tensors at each depth value, and the
eigenvalues  and  eigenvectors  of  each  stress  tensor
extracted  to  obtain  the  principal  stress  magnitudes  and
orientations.

4 RESULTS AND DISCUSSIONS

The  posterior  distributions  of  the  Cartesian  stresses
obtained  using  uninformative  and  informative  priors  are
summarized in Table 1.  Bayesian regression estimates of
the  individual  Cartesian  stress  components  using
uninformative priors are shown in Figure 2, with regression
plots for three normal stresses presented in the top row and
the three shear stresses in the bottom row. Uncertainty in
estimates  of  the  individual  mean  Cartesian  stress
components  relative  to  depth  below  ground  surface  are
indicated  by 95% credible  intervals  (C.I.)  of  the posterior
distributions; these are obtained from MCMC simulations of

the mean values. The credible interval in Bayesian statistics
is  that  interval  which contains the mean with  a particular
probability (95% in our analysis), and 95% C.I. is obtained
by  equal  tail  method  (i.e.  0-2.5%  and  97.5-100%  are
discarded).  Discussion  on  how  C.I.  fundamentally  differs
from the confidence interval used in frequentist statistics is
given in many textbooks (e.g. Gelman et al. 2014).

Table 1 Summary of  posterior  distributions of  Bayesian
regression of Cartesian stresses 

Intercepts (uninformative priors)
β0σ

x

β0σ
y

β0σ
z

β0τ
xy

β0τ
xz

β0τ
yz

Mean 6.629 6.191 0 0.267 0 0
Standard
deviation

1.443 1.222 - 0.597 - -

2.5% C.I. 3.823 3.801 - -0.912 - -
97.5% C.I. 9.459 8.564 - 1.450 - -

Gradients (uninformative priors)
βσ x

βσ y
βσ z

βτ xy βτ xz βτ yz

Mean 0.057 0.066 0.037 -0.015 -0.003 -0.002
Standard
deviation

0.007 0.006 0.003 0.003 0.001 0.002

2.5% C.I. 0.043 0.055 0.035 -0.021 -0.006 -0.005
97.5% C.I. 0.071 0.078 0.043 -0.009 0.0004 0.002

Gradients (informative priors)
- - βσ z

- βτ xz βτ yz
Mean - - 0.027 - -0.001 -4.5E-4
Standard
deviation

- - 9.5E-4 - 8.1E-4 8.6E-4

2.5% C.I. - - 0.016 - -0.012 -0.011
97.5% C.I. - - 0.038 - 0.010 0.010

All  three  normal  stresses  show  a  positive  correlation
indicating  that,  as  one  would  expect,  they  increase  with
depth. The C.I. for σx  and σ y  appears to be much larger
than that for σz , which suggests that σz  can be estimated



with greater certainty than can σx  and  σ y . The 95% C.I.
for  the  mean values  of  σx  and  σ y  at  600m depth are
approximately 30 to 52 MPa and 37 to 55 MPa respectively.
For  the  stresses acting  in  a  horizontal  direction  at  600m
depth,  the  mean  values  are  about  σ̄x=41 MPa ,
σ̄ y=46 MPa  and  τ̄xy=−9MPa ,  indicating  a  rotation  of

principal  stress  orientation  of  about
0.5 atan [ (2 ×−9) /(46 −41 )] =−37 °  from  the  x-axis.

However, the wide C.I.s in these stress components indicate
that there will be significant variability in this rotation angle,
suggesting that it is quite wrong to assume the orientations
of the horizontal principal stresses well known. This should
not be ignored during design calculations.

Both  τxz  and  τyz  show a near zero posterior  mean,
with probabilities of about 98% and 88% respectively that
the posterior mean is zero, and a relatively narrow C.I. This
implies that one of the principal stresses will be vertical or
near vertical. Conversely, the mean value of τxy  is seen to
change  with  depth,  which  indicates  rotation  of  the
sub-horizontal  principal  stresses  with  depth.  However,  as
noted above, the wide 95% C.I. of τxy  indicates significant
uncertainty in this component, and this will propagate into
uncertainty in the orientations of the sub-horizontal principal
stress. 

A comparison of two approaches to estimating variation
of principal stress magnitude with depth – namely, Bayesian
regression  of  individual  principal  stress  magnitudes  and
principal  stress magnitudes obtained by random sampling
from the results of Bayesian regression of Cartesian stress
components  – is  shown  in  Figure  3.  It  is  important  to
recognise  that  although  all  three  plots  in  Figure  3  show
principal stress magnitudes, only the analyses in Figure 3b
(uninformative priors) and Figure 3c (informative priors) are
based on regression of  Cartesian stress components and
thus  linked  to  principal  stress  orientations.  A  noteworthy
effect of this is seen in the non-linear variation of principal
stress magnitude with depth,  particularly  for  σ2  between
depths 0-200m. Although generally similar, there are subtle
but  important  differences  among  the  three  diagrams.  For
example,  the  C.I.s  for  σ1  and  σ2 in  3(b)  and  3(c)  are
narrower  than  those  in  3(a);  this  shows  that  regression
based  on  Cartesian  components  leads  to  smaller
uncertainty  than  regression  based  on  principal  stress
components. Also, the difference between the mean values
of σ1  and σ3  (i.e. the differential stress σ̄1−σ̄3 ), is smaller
for 3(b) and 3(c) than for 3(a); as differential stress is a key
factor in assessing the stability of rocks, this suggests that
regression  of  Cartesian  components  will  lead  to  stress
states that are less critical than will regression of principal
stresses. Note also how the mean and C.I. of  σ3  reduces
from 3(b) to 3(c)  through the use of informative priors.

(a) Bayesian regression of principal magnitudes

(b) Principal magnitudes obtained from Bayesian regression
of Cartesian stress components (uninformative priors)

(c) Principal magnitudes obtained from Bayesian regression
of Cartesian stress components (informative priors)

Figure 3. Estimated variation of principal stress magnitudes
with depth

Figure 4 gives the distributions of both the orientations
and  magnitudes  of  the  principal  stresses  obtained  by
random sampling from the results of uninformative Bayesian
regression of Cartesian stress components at 450m (near to
the  planned  repository  depth).  The  credible  regions  of
orientation  shown  in  Figure  4(a)  have  been  determined
using the procedure proposed by Feng et al. (2021), which
uses statistical  depth of  multivariate  data.  Here,  we have
used  the  R  package  ddalpha  (Pokotylo  et  al.  2019)  to
compute Mahalanobis statistical depth in order to find a 95%
credible region around the mean vectors. The plot shows a
near  vertical  orientation  for  σ3  and  near  horizontal
orientations for  σ1  and  σ2  at  trends of  about  145° and
055°,  respectively.  Distributions  of  principal  stress
magnitudes  obtained  from  Monte  Carlo  simulation  are
shown in Figure 4(b).  The most probable mean values at



450m  depth  for  σ1 ,  σ2  and  σ3  are  approximately
41 MPa,  28 MPa  and  16 MPa,  and  the  95%  C.I.  are
approximately  38  to  45 MPa,  24  to  31 MPa  and  14  to
19 MPa,  respectively.  These  wide  C.I.s  should  be
accounted for in design calculations.

Figure 5 shows the results of using informative priors as
discussed earlier, and clearly demonstrates the benefits of
them. Thus, not only have the orientations of  σ1  and  σ2

moved closer to being horizontal, and that of σ3  to vertical,
but also the uncertainty in orientations of all three principal
stresses  is  significantly  reduced.  For  the  magnitudes  of

principal stresses, it should be noted that the distribution of
σ3  has shifted to the left (i.e. reduced). The most probable

mean values of  σ2  and  σ3  calculated from samples  of
Cartesian stresses using informative priors are respectively
about  27 MPa  and  12 MPa,  as  opposed  to  28 MPa
and16 MPa  estimated  using  uninformative  priors.  This
updated estimate of  σ3=12 MPa  corresponds to a stress
gradient of 0.027 MPa/m, i.e. a unit weight of 0.027 MN/m3.
Furthermore,  informative  priors  lead  to  a  significant
reduction in 95% C.I. for the magnitude of σ3 , although the



mean and 95% C.I. of the magnitude of σ1  remains almost
unchanged.

5 CONCLUSIONS

Linear  regression  of  principal  stress  magnitudes  against
depth continues to appear in the rock mechanics and rock
engineering  literature,  despite  this  analysis  not  honouring
the  tensorial  nature  of  stress  and  thus  being  strictly
incorrect.  Furthermore,  this  regression  suffers  the
considerable  deficiency  of  being  unable  to  determine
principal stress orientations. 

We  have  presented  a  method  of  Bayesian  linear
regression of Cartesian stresses against depth that is fully
faithful  to  the  tensorial  nature  of  stress.  This  Bayesian
regression  method  allows  us  to  estimate  the  posterior
distributions  of  mean  Cartesian  stresses  using  MCMC
computations, and random sampling from these distributions
allows the  magnitudes and orientations  of  principal  mean
stress to be determined. 

We have demonstrated the applicability of the method
using 115 overcoring results performed at a range of depths
at the SKB Forsmark site in Sweden. For the entire depth
range of 0‒600m we have shown profiles of both Cartesian
stress  components  and  principal  stress  magnitudes,  and
95% credible intervals associated with these. These results
show that it is reasonable to assume one principal stress is
vertical,  but  there  is  significant  uncertainty  about  the
magnitudes  and  orientations  of  the  horizontal  principal
stresses.  We also have demonstrated how this uncertainty
in  the  orientations  and  magnitudes  of  the  sub-vertical
principal  stresses  can  be  reduced  by  using  appropriately
chosen  informative  priors  for  the  Bayesian  regression
analysis. Additionally, we have shown that the variation of
principal stress magnitudes with depth is non-linear. For the
planned  repository  depth  of  450m  we  have  presented
distributions of both the magnitudes and orientations of the
principal  stresses,  together  with  the  associated  credible
intervals  (for  magnitudes)  and  credible  regions  (for
orientations).  These results demonstrate the superiority of
this method over the customary linear regression of principal
stress  magnitudes,  and  its  potential  usefulness  in  rock
engineering design. 
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