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ABSTRACT 
Early-warning systems have been proven as robust tools to mitigate the consequences of landslides. Forecasting the 
failure time, an integrated part of such systems, is a challenging task due to scatters in acquisitions that obscure true 
values of deformations. As a result, an appropriate filter should be employed to minimize scatters and improve the accuracy 
of estimations. Aside from the forecasting technique, the reliability of such projections is dependent on the selected filter. 
Previous studies have evaluated the impact of filtration methods on displacements and interpreted velocities/accelerations. 
This paper evaluates the effect of simple and Gaussian-weighted moving average filters on the forecasted failure time. To 
this end, they have been applied to three case histories (8 datasets) and a series of synthetic datasets simulating unfiltered 
landslides’ displacements. The results show that the simple moving average, frequently used because of its simplicity, is 
outperformed by the Gaussian filter by 60 to 80% improvements in the accuracy of forecasts. 
 
RÉSUMÉ 
Les systèmes d'alerte précoce se sont avérés être des outils robustes pour atténuer les conséquences des glissements 
de terrain. La prévision du temps de défaillance, partie intégrante de ces systèmes, est une tâche difficile en raison des 
dispersions dans les acquisitions qui obscurcissent les vraies valeurs des déformations. Par conséquent, un filtre approprié 
doit être utilisé pour minimiser les dispersions et améliorer la précision des estimations. Outre la technique de prévision, 
la fiabilité de ces projections dépend du filtre sélectionné. Des études antérieures ont évalué l'impact des méthodes de 
filtration sur les déplacements et interprété les vitesses/accélérations. Cet article évalue l'effet des filtres à moyenne mobile 
simples et à pondération gaussienne sur le temps de défaillance prévu. À cette fin, ils ont été appliqués à trois études de 
cas (8 jeux de données) et à une série de jeux de données synthétiques simulant les déplacements de glissements de 
terrain non filtrés. Les résultats montrent que la moyenne mobile simple, fréquemment utilisée en raison de sa simplicité, 
est surclassée par le filtre gaussien par des améliorations de 60 à 80 % de la précision des prévisions. 
 
 
 
1 INTRODUCTION 
 
Proactive ground monitoring has been adopted as an 
appropriate alternative to stabilization options in many 
unstable landslide sites. Early-warning systems (EWSs) 
are usually developed to serve this purpose to which the 
in-situ measurements are fed. Such a system is 
responsible to assess the hazard of potential instability in 
real-time and notify the user(s) of a potential failure. A vast 
majority of public and private possessions as well as lives 
are usually at risk associated with slope instabilities. As a 
result, executing accurate forecasts on the slope failure 
time is one of the essential tasks of an EWS. The inverse 
velocity method (INV) proposed by Fukuzono (1985 a&b, 
1990) is among one of the most practiced methods to 
deliver failure time forecasting. INV suggests that the 
velocity of a failing landslide follows a relationship as Eq.1: 
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where v is the velocity, t is time, tf is the failure time, and A 
and α are empirical constants. The latter is usually 
suggested to be assumed as 2 considering that most 
landslides are observed not to deviate much from this value 
(Rose and Hungr 2007, Segalini et al., 2018). Making such 

an assumption leads to further simplification of Eq.  1, 
meaning that the inverse of velocity values would have a 
linear trend. As a result, INV is a simple method and 
feasible to be graphically implemented. 

The velocity values in Eq. 1 are obtained using any 
method able to monitor the ground displacements, whether 
instruments such as Geocubes using a differential global 
navigation satellite system (Rodriguez et al. 2018) or 
remote sensing techniques (Rodriguez et al. 2020, Sharifi 
et al. 2022b). The captured movements are usually 
obscured by scatters in results which lead to highly 
fluctuant and volatile velocity and acceleration diagrams 
that hamper the integrity of EWSs’ performance. In addition 
to this reason, scatters in displacements should be 
minimized as much as possible since INV is highly 
susceptible to scatters (Carlà et al. 2017). Filters are 
accordingly used to reduce this adverse impact, and the 
simple moving average (SMA) is commonly used because 
of its simplicity (Macciotta et al. 2016 & 2017, Carlà et al. 
2019, Chen and Jiang 2020, Desrues et al. 2021, Grebby 
et al. 2021). Sharifi et al. (2021 & 2022a), however, 
conducted a thorough comparison between the 
advantages and disadvantages of SMA, Gaussian-
weighted moving average (GWMA) and Savitzky-Golay 
(SG) filters using a numerical approach on the synthetic 
database. They reported that among alternatives to SMA, 
GWMA is the most practical filter that one may find reliable 
from the perspective of preserving the true trend and 
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providing a timely forecast of slope failure. The objective of 
this study is to compare GWMA against SMA to evaluate 
the accuracy of forecasts made by INV after the application 
of these filters. To this end, the same numerical analysis 
on the synthetic database is adopted along with 3 case 
histories (8 datasets) of collapse incidences. 

 
 

2 METHODOLOGY 
 
2.1 Numerical analysis on synthetic database 
 
Sharifi et al. (2021 & 2022a) established a framework for a 
numerical analysis on synthetic landslide movement 
databases, which is used here. This technique includes 
generating a series of known diagrams called scenarios 
that resemble the time-series of true values of the study 
parameter (e.g., displacement). A scatter set is also 
synthetically and randomly generated between -1 and +1 
which will be later scaled. The scatter observed in 
observations is a summation result of scatters due to 
various electro-magnetic reasons. The central limit 
theorem in probability theory states that the distribution of 
such summation tends to be a Gaussian distribution when 
enough samples (time-series points here) are provided 
(Smith 2013). The statistical distribution of random scatter 
is therefore assumed Gaussian here with the mean of zero 
and standard deviation of 0.2. The generated scatter is 
then scaled to different levels to feature low to high scatter 
amplitudes. This modified scatter set will be added to the 
scenario to simulate a sample of observations that is 
analogous to unfiltered readings of instruments. In the next 
step, study filters are applied to the unfiltered set and the 
filter performance can be evaluated through the calculation 
of error since the true values are known. 

Assuming α=2, the generated scenario for this study is 
obtained by reversing and integrating Eq. 1 to back-
calculate the displacement as a function of time (Eq. 2): 
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where d is displacement, and the remaining parameters 
are alike to Eq. 1. To have normalized and dimensionless 
scenarios, parameters tf and A are assumed in a way that 
the inverse of velocity varies between 0 and 1. Therefore, 
both tf and A are considered 1. Instruments are not able to 
capture the displacements continuously; therefore, 
scenarios should be generated discretely. To account for 
various monitoring frequencies, the scenario is generated 
various times using different numbers of points as follows: 
1E3, 1E4, 5E4, 1E5, 5E5 and 1E6. The scatter set is also 
generated multiple times corresponding to the number of 
points in the scenario. As mentioned before, the scatter set 
in this method is scaled by variability level (VL) with the 
following values here: 0.001, 0.005, 0.010, 0.050, 0.100 
and 0.150. The unfiltered displacement ( ) is attained 
using Eq. 3, and Fig. 1 shows a sample of unfiltered 
scenarios at VL of 0.15 along with the true trend: 
 

 [3] 

2.2 Filtration procedure 
 
Following the generation of unfiltered scenarios, filters 
should be applied to them. SMA works on a window basis 
and yields the average value of points in it as the filtered 
value. The window slides one step forward followed by 
successive averaging and the process is repeated until 
SMA sweeps all the points in the scenario. GWMA is a 
modified version of SMA, including a weight constant (w) 
which gives less significance to those that are temporally 
distant. Eqs. 4 and 5 present the mathematical equations 
of SMA and GWMA, respectively: 
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Where ŷi is the filtered value, yi is the unfiltered value, p is 
the window length (bandwidth), i corresponds to the total 
points in a scenario and j corresponds to the local index of 
points in the filtration window. In analyzes on the synthetic 
cases, p was normalized to the number of total data points 
in the scenario, denoted as bandwidth ratio (BR). Values of 
0.04, 0.07 and 0.10 have been chosen as BR (Sharifi et al. 
2021 & 2022a). Fig. 2 demonstrates the weight constant 
(wj) with respect to the local index for a bandwidth of 11 
(i.e., the window length covers 5 points preceding and 
succeeding the point of interest). 

It is usual to apply filters with symmetric window types 
for post-processing purposes, meaning that the same 
number of preceding and succeeding points are included. 
However, in real-time monitoring, such as the case of 
EWSs’ applications, succeeding points belong to future 
observations, which are not available at each timestep. 
Data points, consequently, should be taken into the 
filtration process in a non-symmetric manner. This 
suggests that only prior points will be involved, which 
impacts the general performance of filters by inducing a lag 
in the filtered results (Sharifi et al. 2021 & 2022a). 

To quantify the effect of using GWMA instead of SMA 
on forecasting failure time, an improvement index is 
defined as Eq. 6. The minimum acceptable improvement 
index is zero, and higher values toward one are more 
favourable: 
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where TfSMA and TfGWMA are the predicted failure times 
predicted after the application of SMA and GWMA, 
respectively. 
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Figure 1. A sample of generated unfiltered scenario with a 
VL of 0.10 along with the true trend 
 
 

 
Figure 2. Gaussian weighting function for an 11-point 
window 
 
 
3 CASE STUDIES 
 
3.1 Monte Beni slide 
 
A slide with a volume of about 5×105 m3 and a length of 
300 m occurred on the mountain of Monte Beni, located in 
the province of Firenze, Italy, on Dec 28, 2002. This failure 
is speculated to be triggered by the quarry activities and 
precipitations with a combined mechanism of rockslide and 
toppling. The geological setting of the region is comprised 
of tectonic-originated material types such as basalt and 
lava pillows, underlain by limestones associated with marl, 
known as the Calcari a Calpionelle Formation. Although the 
quarry activities were already ceased at the time of 
instabilities, a rainstorm in April 2002, finally prompted the 
slope toward the onset of acceleration. This phase is 
reported to be marked by an increase of underground 
noises from the site, aggravation in feeding debris cones, 
and widening of tension cracks. Various distometric bases 
were installed upon the precipitation event to record 

cumulative displacements which are used in this study 
(Carlà et al. 2017, Gigli et al. 2011). 
 
3.2 Vajont (Monte Toc) slide 
 
Italian Alpes hosts a historical landslide taken place in 
October 1963 in northeastern Italy. A body of 270 million 
m3 of calcareous rocks collapsed to the bottom of the valley 
floor beneath in less than a minute. This significant mass 
induced an overtopping incidence over the dam 
downstream, leading to the loss of almost 2000 lives and 
damage to several villages, and it is reported that reservoir 
level predominantly controlled the creeping movements. 
Velocity readings of four benchmarks, No. 5, 50, 63 and 67, 
installed on this slide are used in this study. Near the main 
scarp, benchmarks 63 and 67 were laid at the same 
elevation, 700 m upslope the benchmarks 5 and 50 were 
(Carlà et al. 2017, Havaej et al. 2015, Helmstetter et al. 
2004). 
 
3.3 Mount St. Helens 
 
St. Helens, located in Washington, United States, is a 
volcanic mountain. Voight (1988) investigated this case as 
part of the mathematical formulation of Fukuzono’s method 
(Fukuzono 1985 a&b, 1990). An imminent eruption of 
magmatic flow can be reflected in changes in the length of 
the crater floor. The rate of changes in this parameter has 
been chosen as the velocity values in INV.  
 
 
4 RESULTS 
 
4.1 Numerical analysis of the synthetic database 
 
Fig. 4 displays the forecast error variation after applying 
SMA and GWMA on the synthetic database using BR 
values of 0.04, 0.07 and 0.10. These errors are calculated 
for various time steps before and at the failure to evaluate 
how their performance varies over time. It is noted that 
similar results were obtained for different VL values. Fig. 4 
shows that for BRs of 0.04 and 0.07, SMA error decreases 
as the time approaches the designated failure. On the 
contrary, SMA error at BR of 0.10 and GWMA at all BR 
values show limited variations with respect to time. 
However, this fact does not undermine their applicability as 
their associated error lay notably lower than the top two 
curves in Fig. 4. It is also seen that window length (BR) 
significantly contributes to the results of SMA while this 
effect diminishes in GWMA results. This observation 
means that deciding how far filtration should outreach is 
critical when using SMA. Auxiliary axes in Fig. 4 are to 
assist with scaling the time axis. Consider that the 
generated unfiltered scenario corresponds to a period of 6 
months, using a BR of 0.04 and GWMA filter would yield 
an average error of 2.2 days at 3.6 days before failure. In 
contrast, this number rises to almost 5.6 days for SMA at 
an identical BR. Fig. 4 also exhibits that increasing BR 
does not lead to more accurate forecasts. Although this 
may seem to conflict with intuitive expectations, Sharifi et 
al. (2021 & 2022a) reported that the non-symmetric window 
type in the filtration of results induces a lagging response 



 

which is intensified at higher BR (or p) values. However, 
the lowest value is not necessarily the best option, as 
lowering window length would jeopardize the scatter 
minimization task that hampers the performance of an 
EWS, indicating a necessity to compromise. More 
information about the slide’s kinematics and the VL of 
instruments can be advantageous to make judgments on 
bandwidth.  

Improvement indices are also calculated from the 
results of Eq. 6 and are plotted in Fig. 5. This parameter 
signifies whether and how much employing GWMA rather 
than SMA is beneficial. Fig. 5 demonstrates that in the 
numerical analysis of the synthetic database, GWMA 
increased the accuracy of forecasts by 60 to 80%, 
depending on the BR and the time of forecasting execution. 
At BR values of 0.07 and 0.10, the improvement index 
decreases within the time range of 0.04-0.010 but recovers 
afterwards until the designated failure. Such parameter 
happens to vary without a clear temporal trend at BR of 
0.04 while holding higher values of improvement index. 
 
4.2 Case studies 
 
The results of INV application after employing GWMA and 
SMA on case studies using different window lengths are 
presented in Figs. 6 to 8 for Monte Beni, Vajont, and Mount 
St. Helens slides, respectively. Fig. 6 illustrates that 
regardless of filtration window length (p) and the time that 
forecasts are made, GWMA-errors are less than the results 
of SMA. Moreover, it shows that SMA tends to self-correct 

as time approaches the failure, similar to GWMA, but rates 
of change are not that much, somehow similar to the 
observations made on the synthetic database. It is also 
seen that the p which determines the number of preceding 
points into the filtration is highly significant. Fig. 6 shows 
that increasing this parameter has led to more substantial 
forecast errors. Although the same pattern can be seen in 
GWMA results, since these diagrams show GWMA is less 
sensitive to p, one may consider this filter relatively 
insensitive to window length. Negative values on the 
vertical axis imply a failure forecast earlier than the actual 
failure. If the absolute values are meant to be minimized, it 
is seen that on day 58 before failure, processing data of 
distometric base 1-2 has resulted in almost the same error 
for SMA and GWMA using p of 4. Aside from the fact that 
the sufficiency of such value for p should be investigated in 
SMA performance, this figure displays that GWMA 
accuracy recovers so that this filter yields a near-zero value 
of error 36 days before failure. In comparison, it rises to 10-
25 days for SMA depending on p. As mentioned before, 
Fig. 7 demonstrates the processing results of the Vajont 
slide for different benchmarks. For this case, negative 
errors have not been obtained, and GWMA error diagrams 
are well beneath the SMA errors. The effect of window 
length is also shown to be the same as before. These 
observations are similar for the Mount St. Helens slide too, 
as shown in Fig. 8. 
       
 

Figure 4. variation of forecast error using SMA and GWMA at BRs of 0.04, 0.07 and 0.10 and certain time steps prior 
to failure (auxiliary axes indicate actual time scales for periods of 6 months, one year, and two years) 
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Figure 5. Improvement index calculated for BR values of 
0.04, 0.07, 0.10 and specific time steps before failure 
(auxiliary axes indicate actual time scale for periods of 6 
months, one year, and two years) 
 
 
5 DISCUSSION 
 
The following items govern the conformity of numerical 
analysis on synthetic database with actual: 1) the 
representativity of the synthetic scenarios’ trends to the 
kinematics of real landslide episode, and 2) the 
consistency of statistical properties between synthesized 
and actual scatter. The former is mostly subjected to how 
much the creep theory can be a proper basis for describing 
the event since the INV is developed based on such an 
assumption. The validity of the latter item is primarily 
dependent on the statistical distribution of scatter. The 
Normal (Gaussian) distribution has been chosen here as it 
is reported to be the case for instrumentational scatter. In 
reality, scatter can also be a result of natural scatter, 
human error or other sources of discrepancy which do not 
necessarily follow the assumed distribution. If those effects 
are significant, data points may appear as intense outliers, 
and their identification would be easier, whether visually or 
by filters devised to this end, such as Hampel (1971), which 
is successfully employed by Sharifi et al. (2022a).  

Eventually, the improvement index was calculated for 
all data points presented in Figs. 6 to 8, and the results are 
presented in Fig. 9. As seen, most of the improvement 
index lies above 60%, suggesting a substantial 
enhancement in failure time forecasts carried out by INV 
after the application of GWMA. These numbers are 
obtained by assuming that forecasts earlier than the actual 
failure time are as unfavourable as the ones made later 
than the actual failure time. In other words, a conservative 
approach was adopted when plotting Fig. 9. 

 
 

 
Figure 6. Variation of error in failure time forecast of Monte 
Beni slide using SMA and GWMA at various periods before 
the failure for (a) baseline 1-2, (b) baseline 3-2, and (c) 
distometric base 1-2 
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Figure 7. Figure 6. Variation of error in failure time forecast 
of Vajont slide using SMA and GWMA at various periods 
before the failure for (a) benchmark 50, (b) benchmark 5, 
(c) benchmark 63, and (d) benchmark 67 
 
 

 
Figure 8. Variation of error in failure time forecast of Mount 
St. Helens slide using SMA and GWMA at various periods 
before the failure 

 
Figure 9. Improvement index after application of GWMA on 
data of case studies 
 
 
6 CONCLUSIONS 
 
Proactive landslides monitoring has been received as a 
robust tool to mitigate the risks of such geohazards in the 
last decades. Early-warning systems (EWSs) are 
developed to serve this purpose and act as a central hub 
where all instruments’ data are assembled and processed, 
and appropriate warnings are issued in case of 
acceleration or imminent failure. Consequently, forecasting 
a failure time is one of the critical tasks of EWSs. Safety 
protocols are usually queued based on the immediacy of 
such forecasts. The reliability of these projections 
determines how much the mitigation plans were successful 
in minimizing losses. The inverse-velocity method (INV) is 
frequently used both in practice and research to deliver this 
task; however, the effect of techniques used to pre-process 
the data is poorly understood thus far. One of the essential 
steps in the pre-processing phase is minimizing 
instrumentational scatter. Simple moving average (SMA) 
has been employed because of its simplicity to understand 
and implement it. Sharifi et al. (2021 & 2022a) underlined 
the insufficiency of this filter from various perspectives, 
suggesting that other better alternatives can be used, such 
as Gaussian-weighted moving average (GWMA). GWMA 
is a modified version of SMA that puts a higher contribution 
to the filtered value on recent readings and less 
significance on temporally distant data.  

In this study, the same numerical approach was 
followed, and the generated scenarios were produced 
based on the creep theory, similar to INV. In conjunction 
with this, three historical failure episodes reported in the 
literature are studied here: Monte Beni, Vajont, and 
Mountain St. Helens instability. It was concluded that 
GWMA could at least improve the failure time forecasts by 
60 to 80%, depending on the remaining time to failure and 
filtration window length. Moreover, it was found that more 
intensive filtration leads to higher errors in forecasts which 
can be probably attributed to the lagged performance of 
filters. This lag is an unavoidable feature caused by the 
nature of real-time monitoring since the future behaviour of 
the slide is not available at each time step. 
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