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ABSTRACT 
A probabilistic approach is proposed for integrating geological and geotechnical information into the development of a 3D 
shear-wave velocity model and assessing the associated uncertainties. The method is applied to the Saguenay region, 
where subsurface geology is heterogeneous and soil sediments are varied in thickness and stiffness. A 3D geological 
model of the unconsolidated deposits is first developed using geostatistical interpolations and sequential indicator 
simulations. Seismic cone penetration tests are then conducted to develop site-specific empirical CPT-Vs and Vs-depth 
correlations for postglacial sediments.  Nonlinear regression analyzes are conducted based on the soil types incorporating 
the cone tip resistance and depth for clay-like and sand-like soils. The final 3D distribution of Vs is estimated by combining 
the Vs-depth correlations with the likelihood of soil type occurrences. Additionally, propagated uncertainty is quantified by 
integrating the simulation variance of the probabilistic geological model and the statistical variance of the Vs-depth 
correlations. 
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RÉSUMÉ 
Une approche probabiliste est proposée pour intégrer des informations géologiques et géotechniques dans le 
développement d'un modèle 3D de vitesse d'onde de cisaillement et l'évaluation des incertitudes associées. La méthode 
est appliquée au territoire du Saguenay, où la géologie du sous-sol est hétérogène et les sédiments sont variés en 
épaisseur et en rigidité. Un modèle géologique 3D des dépôts non consolidés est d’abord développé à l'aide 
d'interpolations géostatistiques et de simulations d'indicateurs séquentiels. Des tests de pénétration de cône sismique sont 
ensuite effectués pour développer des corrélations empiriques CPT-Vs et Vs-profondeur spécifiques au site pour les 
sédiments postglaciaires. Les analyses de régression non linéaire sont effectuées sur la base des types de sol incorporant 
la résistance et la profondeur de la pointe du cône pour les sols argileux et sableux. La distribution 3D finale de Vs est 
estimée en combinant les corrélations Vs -profondeur avec la probabilité d'occurrences de type de sol. De plus, l'incertitude 
propagée est quantifiée en intégrant la variance de simulation du modèle géologique probabiliste et la variance statistique 
des corrélations Vs -profondeur. 
 
 
 
1 INTRODUCTION 
 
Local site conditions tend to modify the amplitude and 
frequency of incoming seismic waves (Seed et al., 1976). 
This phenomenon is known as the seismic site effect, and 
it depends on the geotechnical (e.g., soil type, shear 
modulus, damping ratio) and geological (e.g., stratigraphy, 
basin topography, thickness) properties of soil sediments. 
The time-averaged shear-wave velocity of the top 30 m 
(Vs,30) is one of the well accepted proxies for seismic 
microzonation mapping (SM Working Group 2015; Licata 
et al. 2019; Molnar et al. 2020). Although shear-wave 
velocity (Vs) is recognized as a simple, effective and 
representative parameter for determining site effects, 
obtaining sufficient direct Vs measurements in regional site 
characterization studies is challenging. As a proxy, the 
available geotechnical data represent a useful data source 
for estimating Vs (Oliveira et al. 2020). In this case, 
empirical Vs correlations with geotechnical parameters 

(Salsabili et al. 2022) or depth (Motazedian et al. 2011, 
Podestá et al. 2019) are suggested for addressing the 
scarcity of spatial distribution of Vs measurements. 

Geospatial modeling can be achieved using spatial 
variability. Spatial variation refers to the dissimilarity of pair 
values of a random variable as a function of distance 
(Isaaks and Srivastava 1989). The spatial variation in soil 
properties has been modeled using random field theory, 
which decomposes the spatial variation into a deterministic 
trend function and its residuals (Fenton 1999, Fenton and 
Griffiths 2003). This method can also be used to address 
problems with sparse and nonstationary data (Wang et al., 
2018; Zhao and Wang, 2020). In recent soil engineering 
practices, geostatistical methods have also been used to 
predict spatially-correlated geotechnical properties, such 
as cone resistance and Vs (Vessia et al. 2020; Hallal and 
Cox 2021). However, few attempts have considered the 
influence of soil geological uncertainty on the prediction of 
geotechnical properties (Zhang et al. 2021). The 



 

geostatistical approach has the advantage of being able to 
provide quantitative spatial predictions of soil types 
(probabilistic geological model) prior to estimating 
geotechnical properties, while also providing an 
assessment of spatial uncertainty. 

The objective of this paper is to develop a 3D Vs model 
while considering the uncertainties associated with both 
geological and geotechnical models. The study was 
conducted over the city of Saguenay in Eastern Canada, 
which is a region with highly heterogeneous surficial 
geology and soil layers of varying thickness and stiffness.. 
Lithological heterogeneity was characterized through 
spatial simulation of the main geological units present in 
the study area (e.g., clay, sand and gravel). The resulting 
model depicts the probability of occurrence of geological 
units and their related spatial uncertainties based on the 
simulation variance. Multivariate statistical analysis was 
performed to develop the empirical Vs correlations. The 
geotechnical model was then built by combining the 
estimated occurrence probabilities of the soil units and the 
Vs empirical correlations for each soil type. Thus, a 
consistent spatial distribution of the respective Vs values 
and their uncertainties were determined in 3D.  

 
3 GEO-MODELING AND CONSIDERED 

UNCERTAINTIES 
 
Soil variability is primarily rooted in two sources of 
uncertainty: (1) uncertainty resulting from the inherent 
variability of the natural process and (2) knowledge-related 
uncertainties resulting from the statistical inference of a 
limited number of samples or from measurement 
imprecisions, i.e., statistical uncertainty or measurement 
error (Wang et al. 2016). In addition, transformation 
uncertainty is introduced in the geotechnical variability 
when field or laboratory measurements are transformed 
into design soil properties using empirical or other 
correlation models (Phoon and Kulhawy 1999, Wang et al. 
2016). The propagation of the uncertainty to the design soil 
properties depends primarily on the combination of the 
analytical methods used and probabilistic analysis 

A quantitative geological model obtained by 
geostatistical simulation is presented, along with the 
probability of occurrence of the soil types. Probabilities are 
suggested to describe the different aspects of the 
uncertainty. The “simulation variance” is introduced as a 
quantitative measure of geological uncertainty (Yamamoto 
et al. 2014; Salsabili et al. 2021). Soil units are treated as 
Bernoulli variables with an outcome of either zero or one, 
and the variance (��(��)) is computed based on the 
discrete probability distribution of a random categorical 
variable (��) with an event probability of �� (Eq. (1) and 
Figure 1). 

 
��(��) = ��(1 − ��), ��  ∈  
0,1�,� ∈  
1, … , �� (1) 

 
In the probabilistic approach, the mean (���  �) and 
combined variance (��(�)) of a random geotechnical 
variable (��) with a variance of � �(��) are determined using 
Eqs. (2) and (3). 

 

 
Figure 1. Simulation variance for a Bernoulli variable as a 
function of the probability of occurrence. When the 
probability of an outcome is close to 0 or 1, the variance (or 
uncertainty) is low, whereas when the probability is 0.5, the 
variance is maximal and equal to 0.25.  
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�

���
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The uncertainty in Vs is lowest when the simulation 
variance is zero (i.e., when �� = 1.0) and highest when all 
members are equally probable (i.e., when �� = 0.5). This 
approach contributes to a more realistic model of Vs and its 
associated uncertainties. 

 
4 SAGUENAY CITY STUDY AREA 
 
 Saguenay City was selected as the study area due to its 
relatively high seismic hazard 
(https://earthquakescanada.nrcan.gc.ca/) and the 
presence of heterogeneous Quaternary sediments with 
complex spatial and vertical architecture. It is the largest 
municipality within the Saguenay‒Lac-Saint-Jean region, 
covering 1136 km² with a population of 147,100. The soil 
deposits can be grouped into four major categories: till, 
gravel, clay and sand (Figure 2). 

 Till: This glacial sediment is located at the base of 
the stratigraphic soil column; it is compact and 
semiconsolidated.  

 Gravel: This coarse sediment is mainly of 
glaciofluvial and alluvial origin; it consists of gravel, 
sand and occasionally till.  

 Clays: These fine postglacial sediments are the 
most abundant soil type by volume in the study 
area. Clays are classified as silt, silty clay or clay.  

 Sand: This group consists mainly of coarse 
glaciomarine deltaic and prodeltaic sediments, as 
well as alluvial sands composed of sand and 
gravely sand. 

(pi) 



 

Other unconsolidated sediments, such as loose 
postglacial sediments (alluvium, floodplain sediments, 
organic sediments, etc.) and landslide colluvium, can also 
be found in minor proportions. For the purposes of this 
study, these unconsolidated sediments are classified as 
sand, clay and/or gravel based on grain size.  

 

 
Figure 2. Saguenay city study area: surficial geology map 
(modified from Daigneault et al. 2011). 
 
5 3D PROBABILISTIC GEOLOGICAL MODEL 

 
Sequential indicator simulation (SIS) was used to 
determine the spatial boundaries of categorical variables 
(in this case, clay, sand and gravel) and to develop a model 
that captures the heterogeneity of soil properties prior to 
estimating geotechnical parameters (Salsabili et al. 2021). 
Salsabili et al. (2021) developed the model on the basis of 
comprehensive datasets, including 3,524 borehole logs, 26 
geological cross-sections, and 973 virtual boreholes. They 
were combined to create the total soil and till thickness 
maps and to generate the bedrock topography. The space 
between the top and bottom of each interface was filled 
with 75 m × 75 m × 2 m blocks to perform the geostatistical 
simulation. Then, the 3D model of soil type was created by 
using sequential indicator simulation. Overall, 100 
realizations were generated using the conditional SIS 
method to determine the probability of occurrence (pi) for 
each of the postglacial deposits: clay, sand and gravel. The 
resulting probability values were used to estimate the 
associated simulation variance (uncertainty). Figure 3 
show the probabilistic interpretations of the 100 SIS 
realizations containing all four surficial soil units.  
 
6 GEOTECHNICAL PARAMETERS 
 
For practical convenience and because the term 
“geotechnical model” has different meanings in the 
literature related to stability analysis (Phoon and Tang 
2019), the geotechnical model considered in this paper is 
valid within the limits of elastoplastic behavior before 
ultimate failure. In this context, the geotechnical model was 
created similarly to the 3D geologic model in terms of 
engineering parameters, i.e., Vs. 

 

 
Figure 3. Map of (a) soil units with the highest probability of 
occurrence at the ground surface and (b) one SIS 
realization showing sand, clay and gravel. (c) Local blown-
up showing the surface soil variability in the SIS map. 
 
The procedure includes two main steps: (I) developing Vs 
empirical correlations and (II) creating a 3D Vs model that 
incorporates the probabilistic geologic model and Vs 
empirical correlations.  
 
6.1 Vs empirical correlations 
 
The seismic piezocone penetration test (SCPTu) is an 
invasive method that provides optimized Vs intervals and 
continuous penetration results, allowing the development 
of reliable empirical correlations between Vs and strength-
based soil parameters. For the development of Vs empirical 
correlations, we 1) perform SCPTu field tests, 2) develop 
CPTu–Vs correlations by using the results of 15 SCPTu 
surveys, and 3) estimate Vs on the basis of CPT and SPT 
data by using empirical correlations for the entire study 
area. The final step involves developing Vs–depth 
correlations to assist in determination of the 3D Vs values.  

6.1.1 Field testing program 
 
Fifteen SCPTu surveys were carried out using a standard 
type 2 piezocone. A dual-array seismic cone mounted on 
the top of the piezocone allows the measurement of 
arriving vertically propagating seismic body waves. For a 
given depth, the SCPTu method generates four types of 
data: Vs, the raw cone tip resistance qc, the frictional cone 
resistance fs and the penetration pore pressure u2. The field 
program followed principally the ASTM D5778-12 

(b)

(a) 



 

procedure. In situ tests with invasive methods were 
conducted during three field campaigns (Figure 4): 

 15 recent SCPTu surveys were conducted by the 
Université du Québec à Chicoutimi (UQAC) 
research group. The data include the complete set 
of qt, fs, u2 and Vs measurements. 

 Ninety-one CPT profiles were obtained during the 
1980s and 1990s by the Quebec Ministry of 
Transport (MTQ). The CPT data set is limited to 
measurements of qc and fs. For the purposes of the 
present study, the field reports were digitalized, and 
Vs was calculated using the developed sit-specific 
CPT-Vs correlation. 

Sixty-four standard penetration tests (SPTs) were 
acquired during the 1980s and 1990s by the MTQ. The 
results were incorporated in the determination of the 
geotechnical properties of coarse-grained soils. 

 

 
Figure 4. Distribution of geotechnical test sites. The 
background presents soil thickness (modified from 
Salsabili et al. (2021), and validation was conducted at the 
three indicated sites. 
 
6.1.2 Development of CPTu-Vs correlation 
 
The general CPTu–Vs correlation was developed for 
postglacial soils using 568 data pairs (Eq. (4)). By 
distinguishing between cohesive (clay-like) and 
cohesionless (sand-like) soils, simple and robust 
regression equations for non-piezocone profiles can be 
developed. The soil behavior type index (Ic) was used to 
classify soil into two categories: clay (Ic > 2.6) and sand (Ic 
< 2.6). The soil-specific CPT-Vs correlations for the clayey 
soil (Eq. (5)) and for the sandy soil (Eq. (6)) are indicated 
as follows: 

All soils: V" =
7.648q().*+I-).*��D).)*�(1 + B0)).1+* N = 568 

R2 = 
0.692 

(4) 

Clay: V" = 10.052q().*34D).)5+ N = 453 
R2 = 

0.813 
(5) 

Sand: V" = 38.757q().�37D).)44 N = 115 
R2 = 

0.545 
(6) 

where qt is in kPa; D is depth (m) and Bq is normalized 
pore pressure (for details on the calculation see Robertson, 
(2009)). 

6.1.3 Vs–depth profile 
Following the retrieval and processing of the older MTQ 
CPT logs, 4600 averaged data pairs of qt and fs were 

generated at 50 cm intervals. The Vs values were predicted 
by using the developed empirical CPT–Vs correlations 
(Eqs. (5) and (6)) for sands and clays. In addition, the SPT 
data were converted into Vs by applying the empirical 
relationship of Ohta and Goto (1978) for gravel sediments. 
Then, linear and nonlinear Vs–depth regression analyses 
were conducted on SCPTu and CPT–Vs data for sand and 
clay soils (Eqs. (7)– (9)) and on SPT–Vs data for gravels 
(Eq. (10)). The results are also shown in Figure 5. The 
standard deviations of the Vs–depth correlations were used 
as a measure of statistical uncertainty. Note that the data 
from CPT–Vs and particularly SPT–Vs were subject to 
epistemic uncertainties. These sources of uncertainty have 
not been considered in our methodology, due to the 
limitations in analytical calculations. The use of site-specific 
Vs correlations for the dominant soil types of the study area 
(sand and clay) is, however, intended to reduce the 
epistemic uncertainties.   
 

Sand and Clay mixture: 
 V" = 144.9 + 2.55 × D 

�9:,;< 
= 34 =/? 

R2 = 
0.43 

(7) 

Clay: V" = 114.5 + 9.4 × D).31 
�9:,@ABC 

= 33 =/? 
R2 = 
0.59 

(8) 

Sand: V" = 150.47 × D).�74 
�9:,:BDE 

= 21 =/? 
R2 = 
0.66 

(9) 

Gravel: V" = 46.86 + 61.55 × D).+) 
�9:,FGBHIA 

= 34 =/? 
R2 = 
0.52 

(10) 

 
7 3D GEOTECHNICAL MODEL 
 
A probabilistic method was used to estimate Vs. The Vs 
values for postglacial deposits were estimated on the basis 
of the probabilistic approach by using Eq. (2). The Vs 
values were calculated by using the Vs–depth profiles (Eqs. 
(8)-(10)) and the probability of soil occurrence (pi). Then, 
the associated uncertainty was calculated on the basis of 
the combined variance approach (Eq. (3)) where the 
variance of the regression models for each soil type was 
incorporated for each block. Figure 6 presents the 
developed 3D geotechnical model, which indicates the 
spatial distribution of Vs, and its associated uncertainty is 
shown in Figure 6b. Due to the lack of Vs measurements in 
glacial deposits and bedrock and the geological similarities 
between till and crystalline bedrock, the regional Vs values 
of the glacial deposits and bedrock were calculated from 
the data obtained by Motazedian et al. (2011) (Vs,till = 580 
m/s, σVs,till=175 m/s) and Nastev et al. (2016) (Vs,rock = 2500 
m/s).  
To depict the capacity of the proposed method to model the 
spatial variation of Vs, representative cross-sections are 
shown in Figure 7. It includes a cross-section of the 
postglacial soils on top and till and bedrock at the bottom 
(Figure 7a).  In general, the Vs values increase with depth 
(Figure 7b), but some high anomalies are associated with 
the soil type (gravel sediments). Figures 7c and 7d present 
the uncertainty associated with the Vs estimations in two 
different approaches based on occurrence probability (pi) 
of postglacial soil units (geological model). Figure 7c 
presents the Vs standard deviations (std) in deterministic 
interpretations of the geological model so it considers only 
the std of the Vs-depth regressions. 
 



 

 
Figure 5. Interval Vs–depth relationships for postglacial sandy and clayey soils. Bold lines indicate average values; gray 

lines indicate ±2 standard deviations (σ). 

 
 

 

Figure 6. Probabilistic geotechnical model for the city of 
Saguenay: (a) 3D shear wave velocity and (b) associated 
Vs standard deviation. The color range indicates the Vs of 
postglacial deposits. The assumed uniform values for the 
glacial deposits were Vs,till = 580 m/s and σVs,till=175 m/s.  
 
On the other hand, Figure 7d presents the Vs std 
considering the combined variance of the geological model 
and Vs-depth regression analysis. We can observe that the 
uncertainties in the geological model (pi) have propagated 
to the Vs values and generally cause higher Vs std in the 
model. Also, the standard deviations represent the spatial 
variation of the geological soil units and the predicted Vs 

data. The efficiency of the developed methodology is 
depicted by the traces of the geological boreholes. The 
certainty of the geological model is highest (pi ~ 1) in the 
vicinity of the boreholes, and thus, the combined 
uncertainty of the geological and geotechnical models has 

its lowest value at these locations. In contrast, as the 
distance from the boreholes increases, the spatial 
uncertainty in the prediction of the soil units increases, 
leading to increased geotechnical model and seismic map 
uncertainty. 

 
8 CONCLUSION 
 
This study proposed a novel approach for determining the 
spatial uncertainties of the geological model and 
propagating these uncertainties to the geotechnical 
response variable Vs. A probabilistic approach for seismic 
site characterization was introduced to develop the 3D Vs 
model and to assess the uncertainty associated with 
combining various types of uncertainties in building the 
geological and geotechnical models. The model 
uncertainty was calculated using the combined variance of 
the probabilistic geological model and the variance of the 
Vs–depth regression model. 

Given the complex stratigraphic setting and soil type 
heterogeneity of the study area, sequential indicator 
simulation was used to predict the probability of occurrence 
of the postglacial soil deposits. To quantify the uncertainty 
associated with the geological model, a method for 
determining the simulation variance was introduced. 
Due to the lack of direct Vs measurements, it was 
necessary to supplement the Vs values inferred from 
existing CPT logs, which covered most of the study area. 
SCPT surveys were conducted to develop empirical site-
specific CPT-Vs correlations for postglacial sediments in 
the study area, thereby reducing the epistemic 
uncertainties associated with the use of existing global 
correlations. 

The Vs correlation functions were developed using 
nonlinear regression analyses, which incorporated qt, 
depth and the SBT indicators for general soil types. In soil-
specific correlations, the depth and qt control the significant 
variability of Vs, and the developed CPT-Vs correlations 
were proposed for clay-like and sand-like soils. 

(a) 

(b) 



 

  
Figure 7. Cross-section of AB presenting the geological boreholes traces and (a) geological stratigraphic  (b) Vs spatial 

distribution, (c) Vs standard deviation obtained by deterministic, and (d)  by probabilistic interpretations of the geological 

model. Dashed vertical lines indicate the borehole traces. 
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