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ABSTRACT 
In permafrost regions, the long-term serviceability of infrastructure founded on highly plastic foundation is adversely 
affected by slow-rate, time-dependent deformations (i.e., viscous or creep behavior) of permafrost subject to climate 
change. Investigating such deformations in a Thermo-Hydro-Mechanical (THM) framework requires a coupled non-
isothermal strain-rate geomechanical constitutive model. Long-term deformations of geomaterials are commonly estimated 
by a combination of instant and delayed components of deformations. The instant component is associated with largely 
reversible (elastic) deformations of the soil while the delayed component includes non-recoverable (plastic), time-
dependent and simultaneous thermo-viscoplastic reorganization of the inter-particle microstructure. Based on this 
approach, a Thermal Elastic-ViscoPlastic (TEVP) constitutive model is formulated in accordance with the Critical State Soil 
Mechanics (CSSM) framework to investigate the creep behavior of permafrost. The model predictions fit reasonably well 
the experimental data available in the literature. 
 
 

 
RÉSUMÉ 
Dans les régions nordiques, la performance à long terme des infrastructures fondées sur des sols de plasticité élevée est 
affectée par les déformations lentes et dépendantes du temps (c.-à-d. comportement visqueux ou de fluage) du pergélisol 
soumis aux changements climatiques. L'étude de ces déformations dans un cadre thermo-hydro-mécanique (THM) 
nécessite un modèle de comportement géomécanique couplé non isotherme dépendant de la vitesse de déformation. Les 
déformations à long terme des géomatériaux sont généralement estimées par une combinaison de composantes 
instantanées et tardives des déformations. La composante instantanée est associée à des déformations largement 
réversibles (élastiques) du sol tandis que la composante tardive comprend une réorganisation simultanée thermo-
viscoplastique non récupérable (plastique) de la microstructure inter-particules dépendante du temps. Sur la base de cette 
approche, un modèle constitutif thermique élastique-viscoplastique (TEVP) est formulé conformément au cadre de la 
mécanique des sols à l'état critique (CSSM) pour étudier le comportement de fluage du pergélisol. Les prédictions du 
modèle correspondent raisonnablement bien aux données expérimentales disponibles sur le comportement dépendant du 
temps et de la température des échantillons gelés. 
 
 
1 INTRODUCTION 
 
Permafrost, known as the ground that remains at or below 
0 ⁰C for at least two consecutive years, underlies a large 
portion of the land surface in the northern hemisphere. 
Such sub-zero temperatures ensure the presence of ice-
inclusion geomaterials in Arctic and sub-Arctic regions. The 
soil-atmosphere interactions, in the context of climate 
change, result in short- and long-term changes in 
permafrost thermal conditions. Rates of change in 
temperature are not identical spatially and temporally. For 
instance, the abrupt changes in permafrost thermal 
conditions can be caused by seasonal weather as well as 
the appearance of extreme climatic events during the cold 
and warm seasons. Such different rates of thermal loading 
lead to the spatio-temporal change of permafrost 
landscape and behavior in northern regions. 

In permafrost regions, the existence of ice in the ground 
increases the mechanical strength of the ground by 
producing an apparent cohesion. In warm permafrost 
regions, the melting of ice inclusion in the ground 
generates unfrozen water and excess pore water pressure 

under sufficiently fast thawing rates. Upon melting, the 
strength of the ground reduces due to the disappearance 
of ice bonding. It causes ground surface deformations, 
strength loss, and permafrost degradation, which 
consequently endanger the integrity and serviceability of 
infrastructure in permafrost regions. It is proven that the 
magnitude of such deformations predominantly depends 
on the permafrost type, amount of ground ice, and 
temperature. Coastal erosion and abrupt thaw slump 
events are known as typical permafrost degradation in ice-
rich permafrost regions (e.g., Teufel and Sushama 2019). 

The coexistence of ice and unfrozen water also causes 
irrecoverable slow-rate time-dependent deformation (i.e., 
creep behavior) of permafrost under prolonged constant 
stress conditions. It is usually assumed that creep 
deformation (also referred to as secondary compression) 
either starts simultaneously with the primary (instant) 
deformation or occurs after the end of that. In addition to 
the primary and secondary deformations, tertiary creep 
deformation is also observed in ice-rich permafrost that can 
result in accelerated deformation of infrastructure founded 
on highly plastic permafrost (Andersland and Ladanyi 



 

2003). Temperature, confining stress level, strain rate, ice 
content, and ground stratigraphy are known as factors 
controlling the rheological properties and the stages of the 
creep curve for most frozen soils (Andersland and Ladanyi 
2003). 

To date, many experimental attempts have been made 
to capture the impacts of the aforementioned controlling 
parameters on the creep behavior of frozen soils (e.g., 
Vyalov 1986; Arenson and Springman 2005a; Yao et al. 
2018). Moreover, in the geotechnical context, various 
constitutive models have been developed to theoretically 
examine the creep behavior of frozen soils. A few creep 
models based on the theory of elastic-visco-plasticity or 
visco-elastic-plasticity have been developed for frozen 
soils by considering the effects of time and temperature 
rates. Due to the close analogy between frozen soils and 
unsaturated soils, an elastic-viscoplastic model based on 
the framework of two-stress-state variables was proposed 
by Ghoreishian Amiri et al. (2016a) to describe the rate-
dependent behavior of frozen soils. In this model, 
viscoplastic strains are incorporated into the formulation in 
accordance with the overstress theory proposed by 
Perzyna (1963). Sun et al. (2021) proposed a theoretical 
poro-visco-elastic-plastic damage model that accounts for 
creep behavior and anisotropic damage behavior of 
saturated frozen soils. Assuming frozen soil as a 
viscoelastic material, Li et al. (2022) have proposed a 
viscoelastic-plastic constitutive model for frozen soil, 
disregarding the time-dependent development of plastic 
strains. 

More extensive knowledge of the impacts of ground ice, 
rate of thermal state change, mechanical stress levels, and 
their inter-dependencies are still required to investigate the 
rate-dependent behavior of permafrost. This calls for an 
advanced constitutive model that captures the thermal 
creep deformations and the creep-induced shear failure of 
frozen soils. In this paper, a thermal elastic–viscoplastic 
(TEVP) geomechanical constitutive model is developed 
based on the Critical State Soil Mechanics (CSSM) to 
investigate the rate-dependency behavior of frozen soils. 
In order to demonstrate the capability of the model to 
properly capture the time- and temperature-dependent 
behavior of frozen soils, the model predictions are 
compared with experimental test results in the literature.  

 
2 FROZEN SOILS – BASIC CONCEPTS AND 

STRESS STATE VARIABLES 
 
From a poromechanical point of view, a frozen soil is a 
medium composed of a deformable solid skeleton and a 
porous space filled with unfrozen water and ice. The 
volumetric fractions of the solid skeleton, 𝜃𝑠, unfrozen 

water, 𝜃𝑤, and ice content, 𝜃𝑖, can be described as follows: 
 

𝜃𝑠 = 1 − 𝑛,   𝜃𝑤 = 𝑛𝑆𝑤 ,  𝜃𝑖 = 𝑛𝑆𝑖 ,  𝑆𝑤 + 𝑆𝑖 = 1              [1] 
 

where 𝑛 = 𝜃𝑤 + 𝜃𝑖 is the porosity that increases with 

freezing in-situ pore-water;  𝑆𝑤 and 𝑆𝑖 are the degrees of 
saturation relative to water and ice, respectively. 

In order to describe the behavior of frozen soils, the 
effect of the cryogenic suction change on the skeleton 
deformation is required to be incorporated into the 
formulation. Considering the ice crystals as a part of the 

solid phase, the formulation of the constitutive model can 
be presented within the framework of two-stress state 
variables in which the cryogenic suction defined as: 

 

𝑆 = 𝑃𝑖𝑐𝑒 − 𝑃𝑤                                                              [2] 
 

and the solid phase stress proposed by Ghoreishian Amiri 
et al. (2016b) as:  

 

𝝈∗ = 𝝈 − 𝑆𝑤𝑃𝑤 𝑰                                                         [3] 
 

are the stress state variables. In Eq. 2, 𝑆 is the cryogenic 

suction; 𝑃𝑖𝑐𝑒 and 𝑃𝑤 denote the pressure of ice and water 

phases, respectively. 𝝈∗(= 𝜎𝑖𝑗
∗ ) stands for the solid phase 

stress tensor; 𝝈 (= 𝜎𝑖𝑗) denotes the total stress tensor; 𝑰 (=

𝐼𝑖𝑗) is the second-order isotropic tensor with component 𝛿𝑖𝑗, 

where 𝛿𝑖𝑗 is the Kronecker delta. The cryogenic suction can 

be approximated by the thermodynamic equilibrium at the 
ice-water interface described by the Clausius–Clapeyron 
equation as follows: 
 

𝑆 ≈ 𝜌𝑤𝐿 ln (
𝑇

273.15
)                                                         [4] 

 

where 𝜌𝑤 stands for the density of unfrozen water (1000 

kg/m3), 𝐿 is the latent heat of freezing due to the phase 
change of water (334×103 J/kg), and 𝑇 indicates 
temperature (Kelvin). Eq. 4 denotes that the variation of 
cryogenic suction can be estimated by the variation of 
temperature. 

 
3 THERMAL ELASTIC–VISCOPLASTIC (TEVP) 

MODEL 
 
In order to formulate the behavior of frozen soils, two 
constitutive laws are required to address the effect of 
cryogenic suction (or temperature) on deformation and 
(unfrozen water) saturation; the former is the stress-
suction-strain relation to consider the effect of cryogenic 
suction on the strain. The latter is the suction-saturation 
relation to describe the evolution of saturation under the 
variation of cryogenic suction. The first constitutive law of 
the skeleton relates the solid phase stress increments with 
strain increments considering the effect of cryogenic 
suction. For this purpose, the total strain rate can be 
decomposed into two mechanical (solid phase stress-
dependent) and cryogenic suction-dependent 
components.  It is assumed that the strain rate due to 
changes in solid phase stress is separated into elastic 
(time-independent recoverable) and thermal-viscoplastic 
(time- and temperature-dependent irrecoverable) 
components. Therefore, the total strain can be written as 
follows: 
 

𝜺̇ = 𝜺̇𝜎 +  𝜺̇𝑠𝑢𝑐 =  (𝜺̇𝜎𝑒 + 𝜺̇𝜎𝑇𝑣𝑝) +  𝜺̇𝑠𝑢𝑐                               [5] 
 

where 𝜺̇ ( = 𝜀𝑖̇𝑗) is the second-order total strain rate tensor 

and the over-dot indicates the time rate of change (𝜀𝑖̇𝑗 =

𝛿𝜀𝑖𝑗 𝛿𝑡⁄ , where t is the time); 𝜺̇𝜎 and 𝜺̇𝑠𝑢𝑐 are the strain rate 

due to the solid phase stress changes and suction 

changes, respectively; 𝜺̇𝜎𝑒 and 𝜺̇𝜎𝑇𝑣𝑝 are the elastic and 
thermo-visco-plastic components of strain rate due to 
changes in stress, respectively. 



 

The model can be partitioned into volumetric and 
deviatoric stresses and strains. The mean solid phase 
stress (𝑝∗) and deviatoric stress (𝑞∗) are defined as 
   

 𝑝∗ = 𝜎𝑖𝑖
∗ 3⁄ = (𝜎11

∗ + 𝜎22
∗ + 𝜎33

∗ ) 3⁄                                          [6] 
 

and 
 

𝑞∗ = √3𝑠𝑖𝑗
∗ 𝑠𝑖𝑗

∗ 2⁄                                                                           [7] 

 

where 𝑠𝑖𝑗
∗  is the deviatoric solid phase stress tensor with 

components (𝜎𝑖𝑗
∗ − 𝑝∗𝛿𝑖𝑗), 𝜎𝑖𝑗

∗  is the solid phase stress 

tensor defined earlier. 
 
3.1 Elasticity  
 
Elastic volumetric strain rates are considered to be 
composed of two separate solid phase stress- and 
cryogenic suction-induced components (𝜀𝑝̇

𝑒 =  𝜀𝑝̇
𝜎𝑒 +  𝜀𝑝̇

𝑠𝑢𝑐). 

It is assumed that the elastic shear strain rate is purely 
mechanical, with no cryogenic suction related component 

(𝜀𝑞̇
𝑒 =  𝜀𝑞̇

𝜎𝑒). 

The elastic component of strain rate tensor due to the 
solid phase stress variation can be written as 

 

𝜀𝑖̇𝑗
𝜎𝑒 =

𝑝̇∗

3𝐾𝑒𝑞
𝛿𝑖𝑗 +

1

2𝐺𝑒𝑞
𝑠̇𝑖𝑗

∗                                                     [8] 

 
where 𝐺𝑒𝑞 and 𝐾𝑒𝑞 are temperature- (or suction-) 

dependent equivalent shear modulus and bulk modulus of 
the mixture. Given the assumption of the ice crystals as a 
part of the solid phase, the equivalent elastic parameters 
of the mixture depend on ice saturation as follows 
(Ghoreishian Amiri et al. (2016b)):   
 

𝐺𝑒𝑞 = (1 − 𝑆𝑖)𝐺𝑢𝑓 + 𝑆𝑖
𝐸𝑓

2(1+𝜈𝑓)
                                     [9] 

 

and  
 

𝐾𝑒𝑞 = (1 − 𝑆𝑖)𝐾𝑢𝑓 + 𝑆𝑖
𝐸𝑓

3(1−2𝜈𝑓)
                                    [10] 

 

where 𝐺𝑢𝑓 and 𝐾𝑢𝑓 are, respectively, the shear modulus 

and bulk modulus of the soil in an unfrozen state; 𝜈𝑓 and 𝐸𝑓 

are Poisson’s ratio and Young’s modulus (i.e., deformation 
parameters) of the soil in the fully frozen state. The 
deformation parameters of a frozen soil depend on soil type 
and its temperature (Andersland and Ladanyi 2003). It is 
experimentally demonstrated that Young’s modulus of 
frozen soils increases with decreasing temperature. 
Different empirical equations are presented in the literature 
to express the variation of Young’s modulus with 
temperature. In the present study, the following empirical 
expression is employed for 𝐸𝑓: 

 

𝐸𝑓 = 𝐸𝑢𝑓(1 + 𝑎𝜃)                                                      [11] 

 

where 𝐸𝑢𝑓 is Young’s modulus of the soil in an unfrozen 

state; 𝑎 is a material parameter denoting the change in 𝐸𝑓 

with temperature; and 𝜃 is the absolute number of sub-zero 
⁰C temperature. 

The strain due to cryogenic suction changes (i.e., 
𝛿𝜺𝑠𝑢𝑐 = 𝜺̇𝑠𝑢𝑐 × 𝛿𝑡) is assumed to be elastic and volumetric. 
This assumption is by disregarding the creation of ice 
lenses. This can be interpreted by the curvature-induced 
premelting mechanism within the theory of premelting 
dynamics (Rempel et al. 2004). This mechanism is closely 
the same as the capillary suction mechanism in 
unsaturated soils. Hence, the same expression as the one 
proposed for unsaturated soils (e.g., Alonso et al. 1990), 
can be adopted to determine the volumetric elastic part of 
the strain due to suction variation. Thus, 

 

𝛿𝜺𝑠𝑢𝑐 = (𝑫𝑠𝑢𝑐)−1𝛿𝑆                                                        [12] 
 

where 𝛿𝑆 denotes cryogenic suction changes and 𝑫𝑠𝑢𝑐 is 
the elastic cryogenic suction–strain tensor that can be 
expressed as:  
 

(𝑫𝑠𝑢𝑐)−1 =
1

3𝑉

𝜅𝑠

(𝑆+𝑃𝑎𝑡𝑚)
𝑰                                                [13] 

 

where 𝜅𝑠 is the elastic stiffness parameter for changes in 

cryogenic suction; 𝑉 is the specific volume; and 𝑃𝑎𝑡𝑚 is the 
atmospheric pressure. 

 
3.2 Viscoplasticity 
 

3.2.1. Behavior of Frozen Soil in 𝑞∗ − 𝑝∗ − 𝑆  space 
 
The freezing process in soils is accompanied by an 
increase in mechanical strength. This is because of the 
formation of pore ice at below zero temperatures. Upon 
thawing, the loss of soil strength occurs due to the melting 
of the pore ice, resulting in subsequent settlements. 
Therefore, a suction-dependent criterion is required to 
capture the essential features of frozen and unfrozen 
behavior. Given the close analogy between the suction-
dependent stress-strain behavior of frozen soils and 
unsaturated soils, the yield surface or plastic potential 
surface in the Barcelona Basic Model (BBM) proposed by 
Alonso et al. (1990) for unsaturated soils is adopted in the 
TEVP constitutive model presented in this study to 
formulate the behavior of frozen soils. Hence, considering 
the solid phase stress and cryogenic suction as the two 
stress state variables, this suction-dependent surface can 
be expressed in the 𝑞∗ − 𝑝∗ − 𝑆  space as follows: 

 

𝐹 = 𝑞∗2 − 𝑀2(𝑝∗ − 𝑝𝑡
∗)(𝑝𝑓

∗ − 𝑝∗) = 0                          [14] 

 

where 𝑝𝑡
∗ (= −𝑘𝑡𝑆) denotes the apparent cohesion of the 

frozen soil due to cryogenic suction (𝑘𝑡
 is the parameter 

denoting the increase in apparent cohesion with cryogenic 
suction); 𝑀 is the slope of the critical state line (CSL) in 

𝑞∗ − 𝑝∗ space; and 
 

𝑝𝑓
∗ = 𝑝𝑟

∗  (
𝑝𝑜

∗

𝑝𝑟
∗)

𝜆𝑜−𝜅𝑜
𝜆𝑓−𝜅𝑓                                                      [15] 

 

in which 𝑝𝑜
∗  is the pre-consolidation stress in an unfrozen 

state, 𝑝𝑟
∗ is the reference stress; 𝜅 describes the 

compressibility coefficient within the elastic region that is 
assumed to be temperature- (or cryogenic suction-) 
independent (𝜅𝑓 = 𝜅𝑜); 𝜆𝑓 is the elastoplastic 



 

compressibility coefficient of the soil in a frozen state. As 
proposed by Alonso et al. (1990) for unsaturated soils, for 
a frozen state of the soil, 𝜆𝑓 can be correlated with the 

elastoplastic compressibility coefficient of the soil in an 
unfrozen state (𝜆𝑜) as follows: 
 

𝜆𝑓 = 𝜆𝑜 [(1 − 𝛼) exp(−𝛽𝑆) + 𝛼]                                  [16] 
 

𝛼 is a model parameter related to the maximum stiffness of 
the soil and 𝛽 is a parameter that controls the rate of 
change in soil stiffness with cryogenic suction. A schematic 
of this surface is illustrated in Figure 1. Similar forms are 
also employed by other researchers for constitutive 
modeling of frozen soils (e.g., Nishimura et al. 2009; 
Ghoreishian Amiri et al. 2016a,b). As shown in this figure, 
in an unfrozen state (zero cryogenic suction), the surface 
reduces to that in the well-known Modified Cam-Clay 
model. 

 
 
Figure 1. Illustration of the surface adopted for the TEVP 

constitutive modeling of frozen soils in 𝑞∗ − 𝑝∗ − 𝑆  space. 
 

3.2.2. Thermal Viscoplastic Strains 
 
In order to determine the suction- (or temperature-) 
dependent viscoplastic deformation, plastic potential and 
yield surfaces should be described at the current stress 

state of the soil (𝑞∗ − 𝑝∗ − 𝑆1). Therefore, the suction-
dependent surface presented in Eq. 14 is adopted as the 
plastic potential surface (PPS) passing through the current 
stress state of frozen soil. The yield surface, inside which 
deformations are purely thermal elastic, can be described 
according to the current stress state and keep a similar 
shape to the PPS (see Figure 2). The current stress state 
remains outside the yield surface allowing the thermal 
plastic deformation of the soil with time (i.e., thermo-visco-
plastic deformation). 

It can be reasonably assumed that the plastic 
volumetric strain increment at the current stress state (see 
A in Figure 2) is equal to that under the corresponding 
isotropic stress state ((𝑞∗ = 0) − (𝑝∗ = 𝑝𝑚

∗ ) − 𝑆1), (see AA 
in Figure 2) (Tavenas et al. 1978). Therefore, thermal 
viscoplastic deformation is formulated by considering the 
response of frozen soil in isotropic compression. For this 

purpose, the changes in specific volume of frozen soil (𝑉) 
under isotropic compression loading condition is 
investigated. As shown in Figure 2, in such loading 
conditions, combinations of the mean solid phase stress 

(𝑝𝑚
∗ ) and specific volume (𝑉𝑚) form the isotropic normal 

compression line (NCL) at the current frozen state (𝑆 = 𝑆1) 

of the soil in 𝑝∗ − 𝑉  plane. According to the CSSM, the NCL 
can be expressed as: 

 

𝑉𝑁𝐶𝐿 = 𝑁𝑓 − 𝜆𝑓 ln 𝑝𝑚
∗                                                          [17] 

 

where 𝑉𝑁𝐶𝐿 is the specific volume of the frozen soil under 

isotropic compression of 𝑝𝑚
∗ , that can also be referred to as 

the specific volume of the frozen soil at the end of primary 
volumetric compression; 𝜆𝑓 is the slope of the NCL (defined 

in Eq. 16) and 𝑁𝑓 is the specific volume at unit pressure in 

the current frozen state expressed as: 
 

𝑁𝑓 = 𝑁𝑜 + 𝜅𝑠 ln
𝑆+𝑃𝑎𝑡𝑚

𝑃𝑎𝑡𝑚
                                                   [18] 

 

where 𝑁𝑜 is the specific volume at unit pressure in an 
unfrozen state. 
 

 
 

Figure 2. Description of the TEVP model and its 
parameters in 𝑝∗ − 𝑆, 𝑝∗ − 𝑞∗  and ln 𝑝∗ − 𝑉  planes. 



 

Adopting a logarithmic creep function for frozen soils, 
the same as the one proposed by Yin and Graham (1999) 
for unfrozen soils, the purely time-dependent irrecoverable 
(i.e., viscoplastic) changes in the specific volume of frozen 
soil under the isotropic constant stress of 𝑝𝑚

∗  corresponding 
to the current stress state of the soil can be formulated as 
follows: 

 

𝛿𝑉𝑚
𝜎𝑇𝑣𝑝

= − 𝜓𝑇 ln (
𝑡𝑜+𝑡

𝑡𝑜
)                                              [19] 

 

where 𝛿𝑉𝑚
𝜎𝑇𝑣𝑝

 is the thermal volumetric deformation of the 

frozen soil at time 𝑡 after the end of primary compression; 

𝑡𝑜 is a material parameter denoting the initiation time of 
purely creep compression deformations, known as 
secondary creep. 𝜓𝑇 = 𝜓 (𝑇) is a temperature- (or 
cryogenic suction-) dependent creep parameter defined as 
follows:  
 

𝜓𝑇 = 𝜓𝑜 (1 +
𝜃

𝜃0
)

𝑏
                                                                       [20] 

 

where 𝜓𝑜 is the creep parameter at the reference 
temperature (𝜃𝑜, typically 1 ⁰C); 𝑏 is a material parameter 
relating the changes in creep parameter with changes in 
temperature. In Eq. 19, the negative sign is used to indicate 
that the specific volume decreases with time. In Eq. 19, 𝑡 =
0 corresponds to the end of the primary compression 
resulting in zero thermal viscoplastic volume change 

(𝛿𝑉𝑚
𝜎𝑇𝑣𝑝

= 0; and  𝑉𝑚 = 𝑉𝑁𝐶𝐿). Hence, Eq. 19 can also be 

written in the form of: 
 

𝑉𝑚 = 𝑉𝑁𝐶𝐿 −  𝜓𝑇 ln (
𝑡𝑜+𝑡

𝑡𝑜
).                                          [21] 

 
The same equation is also employed by Kelln et al. (2008) 
for the creep behavior of unfrozen soils. In the variational 
format, Eq. 19 can be written as: 
 

𝛿𝑉𝑚
𝜎𝑇𝑣𝑝

= −
𝜓𝑇

𝑡𝑜+𝑡
 𝛿𝑡                                                       [22] 

 
and one may obtain the thermal viscoplastic volumetric 
strain rate as: 
 

𝜀𝑝̇
𝜎𝑇𝑣𝑝

=
𝛿𝜀𝑝

𝜎𝑇𝑣𝑝

𝛿𝑡
=

𝛿𝑉𝑚
𝜎𝑇𝑣𝑝

𝑉𝑚⁄

𝛿𝑡
=

𝜓𝑇

𝑉𝑚 (𝑡𝑜+𝑡)
                                [23] 

 

𝜀𝑝
𝜎𝑇𝑣𝑝

 is considered to be positive in compression. Eq. 23 

defines creep rate for an elapsed time 𝑡. 

At time 𝑡 after primary compression, isotropically 

compressed states 𝑝𝑚
∗ − 𝑉𝑚 of the frozen soil can be 

defined in ln 𝑝∗ − 𝑉 plane by a line. This line is parallel to 

and at constant vertical 𝛿𝑉𝑚
𝜎𝑇𝑣𝑝

 separation from the NCL for 

the current frozen state of the soil. As the elapsed time for 
thermal viscoplastic straining approaches infinity, these 
states are defined by a line bounding further creeping. In 
unfrozen soils, Kelln et al. (2008) referred to this line as the 
viscoplastic limit line (VPL) (shown in Figure 2) where 
viscoplastic deformations cease. In frozen soils, depending 
on the ice content, temperature, and stress state of the soil, 
secondary creep can be followed by a tertiary creep with 
an accelerating creep rate. Under such conditions, the 
frozen soil is expected to fail over a shorter period of time 

than theoretical infinity. Hence, the termination of creeping 
may seem peculiar. Accordingly, the definition of the VPL 
for frozen soil is still necessary for the completeness of the 
mathematical description of the model. It should be noted 
that the location of the VPL does not significantly impact 
the magnitude of thermal viscoplastic strain rates. It will 
only control the extent by which the response of the soil is 
entirely elastic (discussed later in the Yield Surface 
subsection). Noting  the parallelism of the VPL with the 
NCL, the following equation can be employed for the VPL: 
 

𝑉𝑉𝑃𝐿 = 𝑍 − 𝜆𝑓 ln 𝑝∗                                                         [24] 

 

where 𝑍 is the intercept of the VPL at unit pressure in the 
current frozen state of the soil. At infinite time (𝑡 = ∞), in 
which the isotropic specific volume is on the VPL, the 
vertical separation between the VPL and NCL can be 
determined as 𝑁𝑓 − 𝑍. 

The specific volume of the frozen soil at a specific time, 
say 𝑡, after primary compression can be stated by 
substituting Eq. 17 into Eq. 21 as follows: 
 

𝑉𝑚 = 𝑁𝑓 − 𝜆𝑓 ln 𝑝𝑚
∗ −  𝜓𝑇 ln (

𝑡𝑜+𝑡

𝑡𝑜
)                                  [25] 

 
and then solving Eq. 25 for time 𝑡 results in 
 

𝑡 = −𝑡𝑜 + 𝑡𝑜 exp (
𝑁𝑓−𝑉𝑚

𝜓𝑇
) (𝑝𝑚

∗ )
− 

𝜆𝑓

𝜓𝑇                               [26] 

 

Replacing Eq. 26 into Eq. 23 gives the thermal viscoplastic 
volumetric strain rate for an isotropically compressed soil 
in the current frozen state as follows: 
 

𝜀𝑝̇
𝜎𝑇𝑣𝑝

=
𝜓𝑇

𝑉𝑚 𝑡𝑜
exp (

𝑉𝑚−𝑁𝑓

𝜓𝑇
) (𝑝𝑚

∗ )
𝜆𝑓

𝜓𝑇                                      [27] 

 
3.2.3. Yield Surface 
 
A yield surface that is composed of a series of yield loci (Yl) 
should be incorporated into the model to separate purely 
thermal elastic deformations of the frozen soil from thermal 
viscoplastic deformations. For this purpose, as briefly 
noted before, a yield surface with a similar shape to the 
PPS is adopted in the model according to the isotropic 
stress state corresponding to the current frozen state of the 
soil (see the yield locus associated with the isotropic stress 
state at AA, YlAA, in Figure 2). Hence, the yield surface is 
expressed as follows: 
 

𝐹𝑌 = 𝑞∗2 − 𝑀2(𝑝∗ − 𝜒𝑡)(𝜒 − 𝑝∗) = 0                            [28] 
 
in which 𝜒 (= 𝑝𝑓𝑌

∗ ) and 𝜒𝑡
 (= 𝑝𝑡𝑌

∗ ) represent yielding in 

isotropic compression and in isotropic tension, indicating 
the size of the yield locus at the current frozen state of the 
soil (𝑆 = 𝑆1) (see Figure 2). As shown in Figure 2, an 
isotropically compressed frozen soil under constant stress 
state creeps from AA on the NCL with increasing time to B 
and then to C. Thermal viscoplastic volumetric straining is 
associated with hardening of the soil and subsequently with 
the expansion of the yield locus. It can be assumed that the 
yielding criterion in isotropic compression (𝑝𝑓𝑌

∗ ) is fixed 



 

along the VPL in the compression plane. Thus, the 
intersection of the VPL (Eq. 24) with the unloading-
reloading line (URL) corresponding to the initial yield locus 
gives the size of the initial yield locus in isotropic 
compression (𝑝𝑓𝑌

∗ ) as follows: 

 

𝑝𝑓𝑌

∗ = exp [(
1

𝜆𝑓−𝜅𝑓
) (𝑍 − 𝑉 − 𝜅𝑓 ln 𝑝∗)]                          [29] 

 
For the state 𝑝𝑚

∗ − 𝑉𝑚 of the frozen soil at AA in Figure 2, 

Eq. 29 gives the size of the initial yield locus (i.e., 𝑝𝑓𝑌𝐴𝐴

∗ ). 

The isotropic hardening under the development of thermal 
viscoplastic volumetric strain increment can then be 
formulated in the hardening law as follows: 
 

𝛿𝑝𝑓𝑌

∗ = (
𝑉 

𝜆𝑓 − 𝜅𝑓
𝑝𝑓𝑌

∗ ) 𝛿𝜀𝑝
𝜎𝑇𝑣𝑝

                                                      [30] 

 
The yielding criterion in isotropic tension (𝑝𝑡𝑌

∗ ), can be 

determined by the product of the ratio of 𝑝𝑓𝑃𝑃𝑆

∗ 𝑝𝑓𝑌

∗⁄   and 𝑝𝑡𝑃𝑃𝑆

∗  

(= −𝑘𝑡𝑆1). Thermal creeping of frozen soil can now be 
associated with the expansion of the yield locus from AA 
(YlAA) to B (YlB) and then to C (YlC) (see Figure 2). The yield 
locus at the VPL where 𝑉𝑚 = 𝑉𝑉𝑃𝐿, has reached the PPS 

that corresponds to the yield locus at C (YlC = PPSA,B,C). 
 

3.2.4. Flow Rule 
 
So far, the model is formulated for an isotropic 
compression stress state corresponding to the current 
general stress state. In order to generalize the model to any 
loading path and stress state, a flow rule is required to 
relate plastic deformations to the current stress state. For 
this purpose, a non-associated flow rule is defined as: 
 

𝜀𝑖̇𝑗
𝜎𝑇𝑣𝑝

= 𝛬
𝜕𝐹𝑃𝑃𝑆

𝜕𝜎𝑖𝑗
∗                                                                  [31] 

 

where 𝛬 is a scaler multiplier; 𝐹𝑃𝑃𝑆 stands for the PPS 
passing through the current stress state defined as follows: 
 

𝐹𝑃𝑃𝑆 = 𝑞∗2 − 𝑀2(𝑝∗ − 𝜉𝑡)(𝜉 − 𝑝∗) = 0                          [32] 
 
in which 𝜉 (= 𝑝𝑚

∗ = 𝑝𝑓𝑃𝑃𝑆

∗ ) and 𝜉𝑡
 (= 𝑝𝑡𝑃𝑃𝑆

∗ ) are the 

parameters used to indicate the size of the plastic potential 
at the current stress state (𝑞∗ − 𝑝∗ − 𝑆1) (see Figure 2). 
Given the assumption that the thermal viscoplastic 
volumetric strain increment (or rate) is constant on the 
plastic potential (see A and AA in Figure 2), the plastic 

multiplier can be determined as the quotient of 𝜀𝑝̇
𝜎𝑇𝑣𝑝

 (Eq. 

27) and 𝜕𝐹𝑃𝑃𝑆 𝜕𝑝∗⁄ : 
 

𝛬 =
𝜓𝑇

𝑉𝑚 𝑡𝑜
exp (

𝑉𝑚−𝑁𝑓

𝜓𝑇
) (𝑝𝑚

∗ )
𝜆𝑓

𝜓𝑇  
1

|𝜕𝐹𝑃𝑃𝑆 𝜕𝑝∗⁄ |
                            [33] 

 

Substituting Eq. 33 into Eq. 31 gives the expression for the 
thermal viscoplastic strain rates in a general stress state: 
 

𝜀𝑖̇𝑗
𝜎𝑇𝑣𝑝

=
𝜓𝑇

𝑉𝑚 𝑡𝑜
exp (

𝑉𝑚−𝑁𝑓

𝜓𝑇
) (𝑝𝑚

∗ )
𝜆𝑓

𝜓𝑇  
1

|𝜕𝐹𝑃𝑃𝑆 𝜕𝑝∗⁄ |

𝜕𝐹𝑃𝑃𝑆

𝜕𝜎𝑖𝑗
∗                    [34] 

 

The thermal elastic-viscoplastic stress-strain response 
of the frozen soil is now completed and can be determined 
as: 
   

𝜀𝑖̇𝑗 =
𝑝̇∗

3𝐾𝑒𝑞
𝛿𝑖𝑗 +

1

2𝐺𝑒𝑞
𝑠̇𝑖𝑗

∗ + 𝜀𝑖̇𝑗
𝜎𝑇𝑣𝑝

+ 𝜀𝑖̇𝑗
𝑠𝑢𝑐                            [35] 

 
Eq. 35 reveals that strain increments can be developed by 
changes in solid phase stress and/or cryogenic suction (or 

temperature). In addition, in a constant stress state 𝜎𝑖𝑗
∗  and 

𝑆, time-dependent (i.e., viscoplastic) strain increments can 
still be developed at the frozen state of the soil due to the 
time increment. Also, in a constant solid phase stress state 
(𝜎𝑖𝑗

∗ ), changes in temperature rate (or cryogenic suction 

rate) cause temperature- and time-dependent (i.e., thermal 
viscoplastic) strain increments. 
 
4 DETERMINATION OF MODEL PARAMETERS 
 
In order to investigate the rate-dependent behavior of the 
frozen soils within the proposed TEVP constitutive model, 
18 parameters, in total, are required to be determined. Ten 
parameters are required for describing the behavior under 
the variation of the solid phase stress (𝐺𝑢𝑓, 𝐸𝑢𝑓, 𝑎, 𝜈𝑓, 𝑝𝑜

∗, 

𝑝𝑟
∗, 𝜆𝑜, 𝜅𝑜, 𝑁𝑜, 𝑀); one parameter for calculating cryogenic 

suction-induced strain rates (𝜅𝑠); three parameters for 
coupling effects (𝛼, 𝛽, 𝑘𝑡); and four parameters for 

describing rate effects (𝜓𝑜, 𝑏, 𝑡𝑜, 𝑍). Table 1 presents the 
experimental tests proposed to determine these 
parameters. 
 
Table 1. Proposed tests to determine the TEVP model 
parameters 
 

Test 
Sample 

Parameter 
State Temp (˚C) 

1 
Isotropic 

drained compression 

U
n
fr

o
z
e
n

 

0 
(𝜆𝑜, 𝜅𝑜, 𝑁𝑜, 

𝑝𝑜
∗, 𝑝𝑟

∗) 

2 Drained shear stress 0 (𝐺𝑢𝑓, 𝑀) 

3 
Unconfined triaxial 

compression 
0 (𝐸𝑢𝑓) 

4 
Unconfined triaxial 

compression 

F
ro

z
e
n

 

 

At different 
negative 

temperatures 
(𝑎) 

5 
Isotropic 

compression 
At any specific 
ice saturation 

(𝜈𝑓) 

6 
Isotropic 

compression 
At two different 
temperatures 

(𝛼, 𝛽) 

7 Drained shear stress 
At any negative 

temperature 
(𝑘𝑡) 

8 
Freezing-thawing 

cycling 

Between two 
different 

temperatures 
(𝜅𝑠) 

9 Creep 
At different 
negative 

temperatures 

(𝜓𝑜, 𝑏,𝑡𝑜, 
𝑍) 



 

 
5 MODEL DEMONSTRATION 
 
In this section, the model predictions of time- and 
temperature-dependent behavior of frozen soils are 
compared with those of the two sets of experimental tests 
from the literature to examine its ability and accuracy. For 
this purpose, the results of triaxial compression tests and 
uniaxial creep tests conducted on frozen soils are 
reproduced. 
 
5.1 Triaxial Compression Tests (TCTs) 
 

A number of triaxial compression tests at different 
temperatures were performed by Xu (2014) on frozen sand 
samples. Due to the rapid freezing, ice lensing was 
avoided. The tests were conducted at a constant axial 
strain rate of 1.67×10-4 s-1 and initial confinement of 1 MPa. 
The values of cryogenic suction corresponding to the test 
temperatures are calculated using Eq. 4. The material 
parameters used for the simulations are listed in Table 2. 
Figure 3 compares the predictions of the TEVP model and 
experimental test results.  
 
Table 2. Model parameters used in the simulation of TCTs 
and UCTs 
 

Parameter Unit 
Value 

TCTs UCTs 

𝐺𝑢𝑓
1 kPa 3500 5000 

𝐸𝑢𝑓
 kPa 200×103 140×103 

𝜅𝑜
1 --------- 0.08 0.01 

𝜆𝑜
1 --------- 0.85 0.02 

𝑁𝑜
 --------- 8.6 1.62 

𝑝𝑜
∗1 kPa 5550 280 

𝑝𝑟
∗1 kPa 100 50 

𝑀1 --------- 1.5 0.85 

𝑎 --------- 0.4 0.07 

𝜈𝑓
1 --------- 0.31 0.48 

𝛼1 --------- 0.66 0.49 

𝛽1 kPa-1 0.00011 0.00015 

𝑘𝑡
 --------- 0.1 0.45 

𝜅𝑠
1 --------- 0.008 0.008 

𝜓𝑜
 --------- 0.02 0.001 

𝑏 --------- 0.3 0.4 

𝑡𝑜 min 1440 1 

𝑍 --------- 1 1 

1 The values of this parameter are adopted from Ghoreishian Amiri 
et al. (2016a). 
 

5.2 Uniaxial Creep Tests (UCTs) 
 
Eckardt (1979) investigated the stress-strain behavior of 
frozen sand samples under different negative 
temperatures and creep stresses by conducting uniaxial 
creep tests. The creep deformation of the frozen soil at two 

temperatures (-5 and -15 ˚C) and four creep stresses (1, 3, 
5, and 6 MPa) are reproduced within the formulation of the 
TEVP model. The material properties for these simulations 
are provided in Table 2. The predictions of the TEVP model 
for four of these tests are plotted and compared with those 
of the tests in Figure 4. Solid lines denote the model results. 
 

(a) 

 

(b) 

 
 

Figure 3. Triaxial compression tests on frozen sand at 
different temperatures: (a) deviatoric stress-axial strain 
(𝑞∗ − 𝜀𝑎) plot; (b) volumetric strain-axial strain (𝜀𝑝 − 𝜀𝑎) 

plot. 
 

 
 

Figure 4. Uniaxial creep tests on frozen sand: axial strain-
time plot. 
 

As shown in Figures 3 and 4, the TEVP model can 
satisfactorily predict the behavior of frozen soils under 
different temperatures and confining stress.   
 



 

6 CONCLUSION 
 

A thermal elastic-viscoplastic constitutive model based on 
the framework of Critical State Soil Mechanics was 
proposed to examine the rate-dependent behavior of 
frozen soils. The model was formulated within the two 
stress-state variables framework where the cryogenic 
suction and solid phase stress were considered as the 
independent stress variables. A logarithmic creep function 
was adopted to represent time- and temperature-
dependent plastic deformations of frozen soils. Plastic 
potential and yield surfaces were defined based on the 
current stress state of the soil. The hardening (softening) 
of the soil was formulated based on the definition of the 
viscoplastic limit line. The capability of the model was 
examined by reproducing the conventional triaxial 
compression and creep tests results. The model can also 
simulate the impacts of temperature change rate so that it 
can be used to investigate the behavior of the frozen 
ground under extreme short-term as well as long-term 
climatic events in permafrost regions.  
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