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ABSTRACT 
Ground surface temperature is an essential variable in cold region geotechnical engineering. Physics-based long-term 
simulations of surface energy budgets are associated with complexity, high variance, and computational intensity. This 
study proposes an alternative data-informed framework based on long short-term memory (LSTM) networks to predict 
ground surface temperatures from meteorological variables. The LSTM model was evaluated using monitoring data from 
a permafrost site in the Canadian Arctic and a mid-latitude non-permafrost site. Various aspects of the machine learning 
problem were studied using a series of sensitivity analyses. Long-term projections of ground surface temperature were 
presented for the two sites under both moderate and extreme climate change scenarios. Data scarcity was found to be 
one of the major challenges for the proposed framework. However, the growing number of stations and more reliable 
instrumentation will be in favor of data-driven methods. Provided that suitable training data are available, the data-driven 
framework shows several advantages over the physics-based simulations in forecasting ground surface temperature, and 
potentially other related variables. 
 
RÉSUMÉ 
La température à la surface du sol est une variable essentielle dans la géotechnique des régions froides. Les simulations 
à long terme basées sur des bilans d'énergie de la surface sont associées à une complexité, une variance élevée et une 
intensité de calcul. Cette étude propose un cadre alternatif basé sur des réseaux de mémoire longue à court terme (LSTM) 
pour prédire les températures à la surface du sol à partir de variables météorologiques. Le modèle LSTM a été évalué à 
l'aide de données de monitoring provenant d'un site de pergélisol dans l'Arctique canadien et d'un site sans pergélisol de 
latitude moyenne. Divers aspects du problème d'apprentissage automatique ont été étudiés à l'aide d'une série d'analyses 
de sensibilité. Des projections à long terme de la température à la surface du sol ont été présentées pour les deux sites 
selon des scénarios de changements climatiques modérés et extrêmes. La rareté des données s'est avérée être l'un des 
principaux défis du cadre proposé. Cependant, le nombre croissant de stations et une instrumentation plus fiable 
favoriseront les méthodes basées sur les données. À condition que des données de training appropriées soient 
disponibles, le cadre axé sur les données présente plusieurs avantages par rapport aux simulations basées sur la physique 
dans la prévision de la température à la surface du sol et potentiellement d'autres variables connexes. 
 
 
1 INTRODUCTION 
 
Information on ground temperature profiles is essential in 
many geotechnical engineering projects, particularly in 
cold regions. The annual variation of the ground 
temperature profile plays an important role in choosing the 
minimum burial depth for utilities to avoid freezing. 
Besides, it affects the thermal performance of shallow 
geothermal systems and is an indicator of potential frost 
heaving and thaw weakening, the detrimental phenomena 
that can affect roads, highways, railways, pipelines, etc. 
Furthermore, the stability of permafrost, permanently 
frozen ground covering the arctic and subarctic mainland, 
is also governed by ground temperature. 

Climate change is a major threat of the century and will 
affect communities and infrastructure (IPCC, 2021). The 
costs due to the adverse effects of climate change in 
Canada are estimated to be between $21 billion and $43 
billion per year, and nearly 70% of the infrastructure in the 
arctic zone will be affected by permafrost degradation by 
2050 (Hjort et al., 2022; NRT, 2011). Therefore, 
determining the ground temperature profile and predicting 
its future trends during the service life of construction 
projects are essential steps in a sustainable and climate-
smart geotechnical design. 

The energy budget at the ground surface, known as the 
surface energy budget (SEB), is an interconnected system 
of energy fluxes and components. It results in variations of 



 

temperature in the ground and at its surface, temporally 
and spatially. The ground temperature profile is essential 
in cold region geotechnics. The extreme variations of 
ground temperature happen at the ground surface since it 
is in contact with the atmosphere and fluctuating climatic 
forcings. Ground Surface Temperature (GST) is often used 
in the assessment of freeze-thaw-induced engineering 
challenges, e.g., frost heaving, snow removal, ice control, 
and the operation of winter roads. In some civil engineering 
simulations, SEB can be equivalently modeled by a GST 
boundary condition, which reduces the number of model 
inputs and computation load, and makes the simulations 
feasible over a long-term study period (Kong et al., 2019). 
Mean annual ground surface temperature (MAGST) is a 
widely-used indicator in climate and permafrost studies 
(Smith & Riseborough, 2002). An increase in MAGST 
implies a thermal imbalance, which results in changes in 
the permafrost regime. Therefore, reliable forecasts on 
GST and its derivatives are highly prioritized in many 
sectors and can be remarkable assets in attaining climate 
resiliency. 

The GST is often calculated using physics-based 
methods, i.e., solving SEB through analytical or numerical 
techniques. An analysis of SEB requires the inclusion of its 
involved components, such as air convection heat fluxes at 
the ground surface, solar radiation, and the insulation 
effects due to snow cover (Liu et al., 2019). The inputs of 
the model, for instance, air temperature and snow depth, 
can be obtained from weather station records to calculate 
either present or past GST. Nevertheless, long-term 
physics-based forecasting of GST requires inputs that 
reflect future climate trends. Climate models provide 
projections of meteorological variables, which can be used 
as boundary conditions in SEB analyses to calculate GST 
under different climate pathways. Note that some global 
climate models, such as Canadian Earth System Model 
(CanESM), predict temperatures at the ground surface, yet 
at the time of this study, the spatial resolution of the model 
is 2.8° (more than 300 km) (Swart et al., 2019), which is 
deficient in many applications. 

Although the physics-based analysis of SEB is the most 
realistic approach to calculating ground temperature, it is 
subjected to challenges that limit its use in practice. SEB 
involves a multitude of components, physics, as well as site 
conditions, which require various inputs and detailed 
modeling of the land-atmosphere energy system. Omitting 
one component in the model may significantly affect the 
results. Moreover, the multiphysics simulation of SEB is 
computationally intensive. While the approach can be used 
to calculate the ground temperature at one site, simulating 
a geospatial mesh grid at small temporal increments, such 
as daily, may become infeasible over multidecade study 
periods. Due to these limitations, the GST is sometimes 
estimated from meteorological variables without 
conducting a SEB analysis. For example, the n-factor 
method can estimate the mean seasonal GST from air 
temperature. The n-factor is calculated from the number of 
days with freezing (or above-zero) temperatures in the soil 
and the air. The method has been used in many permafrost 
studies (Klene et al., 2001; Riseborough, 2003). However, 
it has several shortcomings. For example, it estimates GST 
from a single parameter, air temperature, while other 

components of SEB can severely influence ground 
temperature. Besides, interannual fluctuations of air 
temperature and long-term climate changes alter the 
freezing and thawing indices. Therefore, the n-factor is 
subjected to change, and the method is not suitable for 
GST forecasting. 

Data-driven forecasting methods benefit from recent 
advancements in the management of large datasets and 
improved machine learning techniques. With the 
increasing trend of collecting and storing data, it is now 
possible to analyze the data for correlations, patterns, and 
trends. The regression approach, using artificial neural 
networks (ANN), has previously been used to estimate the 
GST from air temperature and other meteorological 
measurements (Tabari et al., 2011). However, temperature 
below the ground surface follows air temperature with a lag 
due to ground thermal mass (Beltrami, 2001; Gilpin & 
Wong, 1976; Saaly et al., 2020). The GST is also affected 
by the past meteorological conditions as it is a resultant of 
above and below-surface heat fluxes, such as solar 
radiation and air convection at the ground surface. This has 
partially been addressed by including the past 
meteorological conditions into the input features of the 
ANN. In other words, each entry of the training and test 
input sets can be a past sequence of input parameters 
(Gheysari et al., 2021). While this approach significantly 
improved the estimation accuracy, ANNs regard the data 
as X-Y points and not as a time series. Besides, efforts 
have been made in the past to forecast the GST using 
linear stochastic methods, e.g., autoregressive integrated 
moving average (ARIMA) (Zeynoddin et al., 2019). 
However, this approach analyzes the past trends only in 
soil temperature time series and omits the governing SEB 
components. Therefore, it is not suitable for long-term GST 
forecasting. 

Recurrent neural networks (RNN) are a family of neural 
networks that are exclusively developed to capture 
temporal dynamic behavior and process time-series data. 
An RNN has a chain-like structure of repeating cells along 
a temporal sequence, in which the output from each step 
can affect the output of the next steps. This enables RNNs 
to store information and process inputs in a sequential 
format. Nevertheless, backpropagation through time in 
RNNs may result in vanishing or exploding gradients when 
the input sequence is relatively long. Long short-term 
memory (LSTM), gated recurrent unit (GRU), and their 
variants are specialized types of RNNs that mitigate the 
vanishing and exploding gradient problem. Therefore, 
LSTM and GRU can process long sequences (Hochreiter 
& Schmidhuber, 1997). LSTMs have been used in climate 
and earth science studies in the past, e.g., forecasting 
rainfall, sea surface temperature, and reconstruction of 
missing groundwater level data (Kratzert et al., 2018; Vu et 
al., 2021; Yang et al., 2018). The application of LSTM to 
estimate the GST from meteorological forcings has 
recently been discussed in the literature (Li et al., 2020). 
These studies, however, used a two-year training dataset, 
which may not be able to capture the interannual variability 
of weather. The accuracy of the estimations throughout the 
year, e.g., in different seasons and at annual peaks, is also 
not known. Therefore, providing long-term forecasts on the 
GST remains a challenge and needs further investigation. 



 

The present study proposes a data-informed LSTM-
based framework for long-term forecasting of the ground 
surface temperature from meteorological variables. The 
performance of the framework is evaluated for two sites in 
the Canadian Arctic as well as mid-latitudes. A series of 
models with different properties are trained and evaluated 
to understand the sensitivity to each parameter and as an 
attempt to reduce prediction errors. Projections of ground 
surface temperature are then presented for the two sites 
under both moderate and extreme climate change 
scenarios. 
 
 
2 METHODOLOGY 
 
The proposed data-driven forecasting framework consists 
of three main stages: training, test, and projection (Figure 
1). First, an LSTM network is trained using a set of labeled 
data. In this study, the dataset includes meteorological 
variables (e.g., air temperature) and ground surface 
temperature, which were measured at the site. The data is 
divided into two subsets for training and test. A data loader 
feeds the training data into the LSTM in the form of 
sequences. In other words, each entry of the 
training/test/projection data sets consists of a label (GST) 
associated with a sequence of meteorological data. The 
model is then trained to detect patterns and correlations 
between GST and meteorological variables. A forward 
pass is subsequently performed using the test data. 
Comparing the measured and estimated GST for the test 
set, the performance of the model is evaluated. Finally, 
time series of meteorological variables are extracted from 
the outputs of climate models under different climate 
pathways. The projections are then fed to the trained model 
to forecast the GST at each climate pathway. 

While this study uses the classic LSTM architecture, 
other variants of LSTM, such as LSTM with peephole 
connections and GRU, can also be similarly integrated into 
the forecasting framework (Britz et al., 2017; Chung et al., 
2014). 

 

 
Figure 1. The proposed LSTM forecasting framework 
 
2.1 LSTM theory 
 
LSTMs, like other recurrent neural networks, are formed as 
chains of repeating modules. While a repeating block of 
RNNs can be as simple as a single layer, each repeating 
module of LSTM usually consists of additional interacting 
components: a cell and a forget gate, an input (update) 
gate, and an output gate, which control the flow of 
information into and out of the cell (Figure 2). The cell state 
is a means of storing information and accounts for the long-

term memory of the network. The forget gate decides what 
information needs to be removed from the cell state. The 
input gate decides whether the cell state must be updated, 
and the output gate regulates the information passed to the 
next hidden state. 

In a forward pass of a classic LSTM, the forget gate first 
inspects the input data, the output of the previous cell and 
decides whether the information should be kept or ignored: 
 

f� � σ�W� ⋅ 	h���, x�� � b��     [1]
 

where f� is the forget gate activation vector, σ�� is the 
sigmoid function, �� is the input vector, ℎ��� is the hidden 
state vector of the previous cell, and W� and b� are the 
weight matrices and bias vector of the forget layer, 
respectively, which are learnt during training. The update 
gate decides which information needs to be added to the 
cell state: 

 
�� � σ��� ⋅ 	ℎ���, ��� � ���     [2]

 

in which �� is the input/update gate activation vector, 
and �� and �� are weight matrices and the bias vector of 
the update gate, respectively. A cell input candidate vector 
is then created as: 
 

��� � tanh��� ⋅ 	ℎ���, ��� � ���     [3]
 

where ���  is the vector of new candidate values,  !"ℎ�� 
is the hyperbolic tangent function, and �� and �� are the 
weight matrices and bias vector, respectively. Having the 
forget and update activation vectors #� and ��, the updated 
candidates ���  and the previous cell’s state ����, the current 
cell state �� is updated as: 
 

�� � #� ∗ ���� � �� ∗ ���        [4] 
 

Finally, the cell output ℎ� is calculated from the cell state 
�� and the activation vector of the output gate %�: 
 

%� � &��'	ℎ���, ��� � �'�     [5] 
 

ℎ� � %� ∗ tanh����      [6] 
 

where �' and �' are the weight matrices and bias 
vectors of the output layer, respectively, which are learned 
during the training. 
 

 
Figure 2. Repeating modules in a classic LSTM 
 
2.2 Training and test data 
 
The availability of suitable training data is one of the major 
challenges in machine learning practices. LSTM, and 
generally all types of RNN, require long uninterrupted 



 

training data as they process. In the case of meteorological 
data, missing data can be a common scenario, especially 
in remote stations or where maintenance is only feasible 
during a limited timeframe of a year. While short periods of 
missing values may be filled via interpolation, large gaps in 
a dataset may render it unusable for model training. 

Having multiple training features, i.e., meteorological 
variables, improves model accuracy by capturing more 
components of SEB. However, choosing a training dataset 
is often a trade-off between temporal size and the number 
of features. Multiple features will increase the chance of 
missing data and narrows the criteria in the search for 
suitable datasets. 

Some of the longest continuous measurements of 
ground temperature in northern Canada have been 
conducted by the Centre d'études Nordiques (CEN). Their 
data are published on the Nordicana D repository (CEN, 
2021). Two sites, representing continuous arctic 
permafrost and mid-latitude (non-permafrost), are chosen 
for this study. The permafrost site is in the Northern 
Ellesmere Island in Nunavut, Canada (83.09N---74.13W). 
The dataset, named Nordicana D1, contains hourly 
measurements of air temperature, the ground temperature 
at different depths, and snow depth (CEN, 2020a). The 
simultaneous records of all channels are available from 
August 2005 to July 2019. There is a one-year gap in the 
GST channel. Nevertheless, the gap divides the data into 
two subsets of 3637 and 1096 daily averages in an 
approximately 75:25 proportion, which can be considered 
as the training and test sets, respectively. 

The non-permafrost site is in the Grands-Jardins Park 
in Charlevoix, Quebec, Canada (47.68°N—70.85°W). The 
dataset, named Nordicana D6, includes hourly 
measurements of air temperature, the ground temperature 
at different depths, and snow depth from September 2008 
to September 2016 (CEN, 2020b), 2928 days in total. 
However, only a portion of the dataset, from 2008 to 2012, 
contain snow depth measurements. Therefore, only one 
feature (air temperature) was used for model training. Note 
that other datasets with multiple meteorological variables 
were found. However, they either contained large gaps or 
were short at the time of the study. 

The projections of meteorological parameters are taken 
from the outputs of Canadian regional climate model 4 
(CanRCM4) as daily time series. The projection datasets 
were extracted under different emission scenarios so that 
the forward pass on the trained LSTM would forecast the 
GST in each case. This study uses the fifth coupled model 
intercomparison project’s (CMIP5) representative 
concentration pathways (RCP), which are widely used in 
climate impact studies. In this regard, the medium 
stabilization and high-emission pathways, RCP 4.5 and 
RCP 8.5, were chosen, respectively. Other climate 
scenarios can be used for forecasts in a similar manner. 
For instance, CMIP6 climate scenarios, known as shared 
socioeconomic pathways (SSP) (O’Neill et al., 2014), can 
be used so that the model can forecast GST with respect 
to long-term socioeconomic trends and policies. 
 
2.3 Model definition 
 

The input and output dimensions of the LSTM are bound to 
the number of training features (e.g., air temperature) and 
the dependent variable (GST), respectively. However, 
additional properties of the model, such as the number of 
hidden units (H) and layers (N*), can affect the model’s 
performance and therefore require a sensitivity analysis. In 
terms of input data, increasing the number of features (N�), 
e.g., including snow depth into the model, and the size of 
the training data (N�) can affect the model accuracy. 
Therefore, a sensitivity analysis is required to study the 
effect of these input parameters on the GST since 
temporally long uninterrupted measurements of GST and 
multivariate meteorological data are often limited. 

The length of the input sequence (S) (Figure 3) 
determines how long the model will investigate the past in 
its memory. The memory of the LSTM is selective. In other 
words, even if a long sequence length is chosen, the model 
can selectively forget the excessive part that does not 
contribute to its performance. Nevertheless, a sensitivity 
analysis of sequence length can reveal how the past 
weather can affect ground temperature. It is expected that 
the introduction of a sequence lag (L) (Figure 3) will 
decrease the model performance since it omits the 
immediate past from being used in model training. 
However, a sensitivity analysis on sequence lag might give 
some insights into the temporal correlation between GST 
and meteorological variables. 
 

 
Figure 3. LSTM input data structure 
 
 
3 RESULTS 
 
The LSTM models of this study are developed using 
pyTorch, an open-source machine learning library in 
Python (Paszke et al., 2019). A manual random seed was 
used with the purpose of reproducibility of the results. To 
assess and compare the models quantitatively, the results 
are discussed in terms of root mean square error (RMSE). 
 
3.1 Evaluation and cross-validation 
 
Both predicted and actual (field measured) ground surface 
temperatures are plotted over the test set for both sites 
(Figures 4 and 5). The predictions generally conform with 
field measurements. For the Nordicana D1 site, where GST 
has an annual variation of about 50 °C, the model, with 
(M=2) and without (M=1) inclusion of snow cover, slightly 
underpredicted the peak summertime GST. On the other 
hand, the evaluation of the model at the D6 site shows 
closer conformity with the actual measurements. 



 

 

 
Figure 4. Model evaluation - Nordicana D1 dataset 
 

 
Figure 5. Model evaluation - Nordicana D6 dataset 
 
 
3.2 Sensitivity analyses 
 
A comparison of models trained by the D1 dataset with and 
without the inclusion of snow depth at various model 
settings (Figures 6 to 9) indicates a decrease in prediction 
error when both air temperature and snow depth are 
included as training features. This is because snow cover 
acts as an insulation layer and affects surface energy 
balance. However, as previously explained, while the 
inclusion of additional features improves the performance 
of the model, it requires uninterrupted time series of each 
feature, which is not feasible at many locations due to 
limited datasets. LSTM, like any other supervised learning 
approach, requires labeled data for training and evaluation. 
Therefore, the training and test datasets should contain the 
same meteorological variables (features) and ground 
surface temperature (label). Besides,  to perform a forward 
pass to forecast long-term GST, the projection data should 
contain the same features as the training and test sets. 
Many downscaled results of climate prediction models 
contain only a limited number of meteorological variables. 
Therefore, while the inclusion of multiple features is 
suggested, it is often bound to available data. 

A sensitivity analysis was performed by training models 
on input sequences (S) ranging from one day to 120 days 
(Figure 6). The models with a shorter length of input 
sequence resulted in high errors, while the models with 
longer input sequences had lower errors, which did not 
change past S=60 days. It implies that the very recent input 
data significantly affects how the model performs. In other 
words, the immediate past has more weight on the model 
memory. Although long input sequences can be used in a 

conservative manner, they significantly increase the 
training time, and therefore may not be suitable when 
computation time is of concern. 

The inclusion of sequence lag (L) caused an increase 
in the prediction error of all models (Figure 7). The optimum 
prediction error is attained when L is zero. This is because 
the introduction of the lag disregards the input entries of the 
immediate past, which were shown to be of a significant 
influence. Note that the introduction of sequence lag may 
imply a short-term forecasting scheme. In other words, it 
may be inferred that when the model is trained with L=L. 
and S=S�, the current S.-day time history of meteorological 
variables can be fed to the model, to predict the GST in the 
L.th day in the future. However, the future GST is governed 
by future meteorological conditions. The scheme, 
therefore, may not be suitable for short-term forecasting as 
it estimates the future GST from the past and present 
weather conditions and does not incorporate future 
meteorological conditions. 
 

 
Figure 6. Prediction error vs. length of the input sequence 
 

 
Figure 7. Prediction error vs. lag in the input sequence 
 

The proposed approach was applied to smaller subsets 
of D1 and D6 datasets to assess the impact of the size of 
the training set on the prediction error. The results indicate 
smaller prediction errors when the models were trained 
with larger subsets of the data, yet the trends do not 
stabilize even when the entire training data were used 



 

(Figure 8). Here the analysis was limited to the available 
monitoring data from the two sites. Larger training data are 
required to determine the optimum N� and detect 
overfitting. For the model parameters, performing a 
sensitivity analysis on the number of hidden cells did not 
reveal any impact on forecast errors (Figure 9) or the 
training time. 

 

 
Figure 8. Prediction error vs. size of training set 
 

 
Figure 9. Prediction error vs. number of hidden cells 
 
3.3 Long-term forecasts 
 
Based on the sensitivity analyses, the models that resulted 
in the lowest errors over the test data were chosen for the 
long-term forecasts. Projections of daily air temperatures 
at the two sites were obtained from the outputs of 
CanRCM4, having a 0.22° horizontal grid resolution, 
equivalent to 25 km. Through bilinear interpolation, time 
series at each site were extracted for RCP4.5 and RCP8.5 
climate scenarios. The projections of air temperature were 
then normalized and fed to the LSTM models to forecast 
daily GST under the two scenarios.  

The predicted ground surface temperatures are 
presented as annual averages for Ellesmere Island and 
Grands-Jardins Park (Figures 10 and 11) until 2100. The 
results reflect the different climates at the two sites, with 
lower MAGST at the Ellesmere Island station. The 
forecasts under RCP4.5 and RCP8.5 scenarios diverge 
after 2050, with RCP8.5 causing a higher rise in MAGST 

by the end of the century. The results also show a higher 
increase in MAGST at the arctic site under both scenarios. 
 

 
Figure 10. MAGST Projections - Ellesmere Island, NU 
 

 
Figure 11. MAGST Projections - Grands-Jardins Park, QC 
 
 
4 DISCUSSION 
 
The data-driven approach, if provided with a robust training 
dataset, can have several advantages over physics-based 
simulations. Once trained, the machine learning model can 
predict over any projection set, i.e., various climate 
scenarios, through a forward pass, without any alteration 
to the trained model, while any change to the boundary 
conditions in a physics-based simulation requires the 
model to be run again. Compared to physics-based 
numerical simulations, the computational intensity of a 
forward pass over a trained model is almost nil. Therefore, 
the data-driven approach can easily generate predictions 
over very long periods in various climate scenarios or an 
ensemble. Here, only two CMIP5 climate scenarios were 
used for demonstration. However, the framework can 
simply use the CMIP6 climate scenarios, which include 
varying assumptions about human development, to 
forecast long-term ground temperatures under different 
socioeconomic pathways. 

Despite the advantages, data-driven models, especially 
if trained with small datasets with a few features, may suffer 
from significant prediction bias. Numerical simulations, on 
the other hand, are more prone to variance. For example, 



 

thermal simulation of the ground surface may result in 
extremely high or low temperatures if one component of the 
surface energy budget is not omitted in the model. Data-
driven models do not experience this issue as their 
predictions are usually within or close to the range of 
training data. Therefore, once their bias is within the 
acceptable tolerance, the low variance of data-driven 
methods may be considered an advantage. 
 
 
5 CONCLUSION 
 
A data-driven forecasting framework was proposed, which 
can forecast ground surface temperature by learning from 
past ground and air temperatures as well as other 
meteorological measurements. It can flexibly incorporate 
various components of the surface energy budget if they 
have been previously measured at the site. The proposed 
framework can predict the ground surface temperature in 
various climate change scenarios, corresponding to the 
projections of meteorological variables provided to the 
model, eliminating extra computation effort. The framework 
also inherently reflects the underlying drives of climate 
scenarios into the predicted ground surface temperature.  

Similar to any data-driven method, the availability of 
data is a major challenge for the proposed framework. 
Long uninterrupted measurements of ground surface and 
other meteorological variables are still very limited. 
However, the increasing number of stations, development 
of more reliable instrumentation, and new remote sensing 
technologies will be in favor of data-driven methods. For 
example, in Canada, many agricultural weather stations in 
the prairies began recording soil temperature and 
meteorological variables since the 2010s and soon can 
provide datasets that are sufficient for data-driven 
forecasts. Besides, with the recent innovations in land data 
assimilation technology, reanalysis data products can be 
used to address the data scarcity and to train data-
informed prediction models. 

The proposed framework intrinsically inherits the 
uncertainties associated with climate prediction models, as 
it predicts ground surface temperature from the projections 
of atmospheric variables. Nevertheless, the alternative 
approach, i.e., physics-based simulations of the surface 
energy budget, also requires meteorological projections as 
boundary conditions and hence inherits the same 
uncertainties. If suitable data is provided, data-driven 
models have several advantages over numerical 
simulations in terms of speed, low variance, and scalability. 
Therefore, the proposed framework can be advantageous 
where many forecasts are required, such as statistical 
analyses, ensemble forecasting, and making predictions 
over large areas. 

Although the proposed framework focuses on the long-
term prediction of ground surface temperature, the same 
methodology can be applied to forecast other parameters 
if past observations are available for model training. Some 
potential examples are ground temperature profile and soil 
moisture. In short, forecasting ground surface temperature 
using data-driven methods, despite some limitations, can 
be considered an advantageous alternative to physics-
based methods as it addresses the drawbacks that are 

associated with numerical simulations and can facilitate 
climate impact assessments on northern Canada’s 
infrastructure. 
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