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ABSTRACT 
Series of finite element numerical simulations were carried out using PLAXIS3D commercial software to study the effect 
of ground slopes on bearing capacity of square footings placed on ground surface without embedment. The numerical 
study was carried out for cohesionless soil in drained condition and cohesive soil in undrained condition. The series of 
simulations were conducted by varying the ground slope angle, setback distance of footing from slope crest, footing width 
and shear strength parameters of soil, which were soil friction angle for cohesionless soil and undrained cohesion for 
cohesive soil. The range of shear strength parameter values were selected to reflect the commonly encountered values in 
practice. For cohesionless soil, the maximum ground slope angle was limited to the soil friction angle; while for cohesive 
soil, slope stability analysis was conducted to determine the maximum slope angle for each chosen value of undrained 
cohesion. The simulation results indicate that the effect of ground slope on bearing capacity diminishes beyond a setback 
distance to footing width ratio of about 0.75 for undrained cohesive soil and 2 for drained cohesionless soil. This finding 
agrees with the semi-analytical approach by Bowles (1997) for footings near slope. However, Bowles’ approach predicted 
±30% of the measured bearing capacities from the numerical simulations. On the other hand, the ground modification 
factors suggested by Hansen (1970) and Vesic (1975) for the conventional bearing capacity equation can be applied only 
for the case of footings placed on slope crest. Thus, in this paper, improved ground modification factors are proposed for 
the cohesion term (Nc) and friction term (Nɤ) of the conventional bearing capacity equation using the simulations data on 
cohesive soil and cohesionless soil, respectively.  
 
RÉSUMÉ 
Des séries de simulations numériques par éléments finis ont été effectuées à l’aide d’un logiciel commercial PLAXIS3D 
pour étudier l’effet des pentes du sol sur la capacité portante des semelles carrées placées sur la surface du sol sans 
intégration. L’étude numérique a été réalisée pour les sols sans cohésion dans des conditions drainées et les sols cohésifs 
dans un état non drainé. La série de simulations a été réalisée en faisant varier l’angle de pente du sol, la distance de 
retrait de la semelle par rapport à la crête de la pente, la largeur de la semelle et les paramètres de résistance au 
cisaillement du sol, qui étaient l’angle de frottement du sol pour un sol sans cohésion et la cohésion non tirée pour le sol 
cohésif. La marge des valeurs des paramètres de résistance au cisaillement a été choisie pour refléter les valeurs 
couramment rencontrées dans la pratique. Pour le sol sans cohésion, l’angle maximal de pente du sol était limité à l’angle 
de frottement du sol; tandis que pour un sol cohésif, une analyse de la stabilité des pentes a été effectuée pour déterminer 
l’angle de pente maximal pour chaque valeur choisie de cohésion non drainée. Les résultats de la simulation indiquent 
que l’effet de la pente du sol sur la capacité portante diminue au-delà d’un rapport distance de retrait à la largeur de la 
semelle d’environ 0,75 pour les sols cohésifs non drainés et de 2 pour les sols drainés sans cohésion. Cette constatation 
concorde avec l’approche semi-analytique de Bowles (1997) pour les semelles près de la pente. Cependant, l’approche 
de Bowles prévoyait ±30% des capacités portantes mesurées à partir des simulations numériques. D’autre part, les 
facteurs de modification du sol suggérés par Hansen (1970) et Vesic (1975) pour l’équation de la capacité portante 
conventionnelle ne peuvent être appliqués que pour le cas des semelles placées sur la crête de pente. Ainsi, dans le 
présent document, des facteurs améliorés de modification du sol sont proposés pour le terme de cohésion (Nc) et le terme 
de frottement (Nɤ) de l’équation de la capacité portante conventionnelle en utilisant les données de simulation sur le sol 
cohésif et le sol sans cohésion, respectivement. 
 
 
 
1 INTRODUCTION  
 
The ultimate bearing capacity (qu) of a foundation is the 
maximum load that can be supported by a foundation 
without causing shear failure of the underlying soil. qu on 
uniform soil with shear strength parameters cohesion (c) 
and friction angle (ϕ) can be calculated using the 
conventional bearing capacity equation given in a general 
form (Eq. 1). 

qu = cNcScdcgcicbc + qNqSqdqgqiqbq + 0.5γBNγSγdγgγiγbγ     [1] 
 
Where Nc,q,γ are bearing capacity factors, Sc,q,γ are shape 
factors, dc,q,γ are depth factors, gc,q,γ are ground slope 
factors, ic,q,γ are load inclination factors, bc,q,γ are base tilt 
factors, q is surrounding overburden pressure at foundation 
level, B is width or least plan dimension of foundation, c is 
soil cohesion, and γ is effective unit weight of foundation 
soil.   



 

The conventional bearing capacity equations by 
Hansen (1970) and Vesic (1973,1975) use ground slope 
modification factors which consider only footings at the 
crest of slope. On the other hand, Bowles (1997) proposed 
modified bearing capacity factors (N’c, N’q, N’γ) which 
include depth and ground slope factors for footing placed 
on or adjacent to slope crest (Eq. 2). Bowles (1997) 
tabulated values of N’c & N’q & provided expression for N’γ. 

  
qu = cN’cScic + qN’qSqiq + 0.5γBN’γSγiγ                               [2]           
 

Researchers such as Keskin and Laman (2012), 
Castelli and Lentini (2012), Azzam and EI Wakil (2015) and 
Acharyya and Dey (2017) carried out experimental and 
numerical tests to understand the failure mechanisms and 
study the effect of sloping ground on bearing capacity of 
footings. 
 
2 NUMERICAL SIMULATIONS 
 
2.1 Model Development 
 
The commercial finite element software PLAXIS 3D 
(Version 20.0.0.119 © 2019) was used to conduct the 
numerical simulations. The typical PLAXIS model used for 
numerical simulations is depicted in Figure 1(a) & (b). 

 
 

 
(a)                              (b) 

Figure 1. PLAXIS model used for numerical simulation of 
footings placed on ground surface with slope. 
 
 

The finite element model was created in PLAXIS 3D by 
first defining a uniform subsurface soil volume with a single 
borehole as shown in Figure 1. Ground water level was 
considered near the bottom of the model to eliminate the 
effect of pore water pressure on the bearing capacity. 
Mohr-Coulomb constitutive model was chosen for soil in 
order to be consistent with the conventional bearing 
capacity analytical approach. The soil material properties 
including soil density, stiffness, Poisson’s ratio and shear 
strength parameters were then defined. Non-associated 
flow rule was adopted with dilation angle (ψ) set to zero 
because it will cause more plastic volume change during 
failure, which is unrealistic for natural soils (Van Baars 
2018). Tension cut-off was not also considered in the finite 
element models (Van Baars 2018).      

The footing was modeled with plate as shown in Figure 
1. The plate properties including plate thickness, density, 
elastic modulus and Poisson’s ratio were then assigned. 
The footing plate properties resembled a typical concrete 

structure and considered to be as rigid as concrete, which 
is discussed later in Section 2.3. An interface surface was 
created underneath the footing plate and extended 1 m 
beyond the footing edge, as shown in Figure 1, to properly 
model the soil-structure interaction and abrupt change of 
footing pressure between the footing plate and surrounding 
soil. The interface was modeled with the same properties 
of adjacent soil without strength reduction for the interface.    

The basic soil elements of the PLAXIS 3D finite element 
mesh are the 10-node tetrahedral elements. In addition, 
special types of elements are used to model structural 
behavior such as 6-node elements for plates and 12-node 
elements for interface surface. A global mesh was first 
generated for the entire volume of model. Mesh refining 
was then applied to the upper portion of soil volume (called 
“Refinement Zone” shown in Figure 1), to the footing plate, 
and to the interface surface. Mesh refining was enabled 
with the use of “coarseness factor” (CF) which is multiplied 
with the global element size. 

Three calculation phases were considered in the 
“Staged Construction” mode of PLAXIS 3D. The first 
phase, called “Initial Phase”, involved the generation of 
initial stress conditions for plane ground condition without 
footing load. The “Gravity Loading” option was used to 
generate the initial stress condition, because field 
equilibrium of the generated initial stresses is satisfied 
using this option. The second phase, called “Excavation 
Phase”, involved the creation of sloping ground by 
deactivating a soil wedge formed by cutting the initial soil 
volume with a diagonal plane surface shown in Figure 1(a). 
For cohesionless soil, the ground slope was limited to the 
soil internal friction angle, (ϕ). For cohesive soil, the 
maximum allowable ground slope was determined with 
undrained slope stability analysis. A plastic calculation was 
run in the second phase to assess the amount of slope 
movement due to excavation. The third phase, called 
“Footing Load Phase”, involved the application of footing 
load by activating the footing plate and prescribing uniform 
vertical displacement to represent rigid footing condition. 
The horizontal prescribed displacements were set to “fixed” 
to model a rough footing condition. All the displacements 
and small strains were reset to zero before moving to the 
second and third calculation phases. 

The model was fixed in the normal directions at the 
vertical boundaries, fully fixed in all directions at the bottom 
boundary and free at the top model surfaces. In the 
“Numerical Control Parameters” options, the “Arc-length 
control type” was set to off and the “Desired maximum 
number of iterations” set to 60, both as necessary, because 
the default values couldn’t allow to carryout large 
prescribed displacement analysis in some cases. 

 
2.2 Numerical Simulation Program 
 
A total of 258 numerical simulations of square footings 
placed on or near sloping ground surface of uniform soil 
were carried out in this research. 137 numerical 
simulations were carried out on drained cohesionless soils 
while the other 121 simulations on undrained cohesive 
soils as shown in Table 1. The square footings considered 
for the numerical simulations were 1mx1m and 3mx3m, 
which reflect the range of footing sizes in practice. The 



 

numerical simulation study was carried out only for the 
case of footings on the ground surface without embedment. 
The slope angle (β) was varied from 10 to 350 while the 
footing setback distance (b) from the slope crest was varied 
from 0 to 8 m depending on the simulation cases.  

  
 
Table 1. Soil properties used in simulations 
 

Cohesionless Soil (ϕ | Ed | v) Cohesive Soil (cu | Eu | v) 

270 | 10MPa | 0.33 25kPa | 5MPa | 0.495 

300 | 20MPa | 0.33 50kPa | 10MPa | 0.495 

330 | 30MPa | 0.33 100kPa | 20MPa | 0.495 

370 | 40MPa | 0.33 200kPa | 40MPa | 0.495 

 cu is undrained cohesion, Ed & Eu are drained and undrained soil 
elastic modulus, and v is Poisson’s ratio.   
 
 

The internal friction angles and undrained cohesion 
values were chosen to cover the commonly encountered 
values in practice. The corresponding elastic modulus 
values were determined on the basis of available 
correlations in literature. The undrained elastic modulus for 
cohesive soil was estimated as 200 times the undrained 
cohesion (Bowles 1997). For cohesionless soil, SPT 
number (N) was first estimated from correlation with the 
friction angle, and then the drained elastic modulus was 
estimated as 1200 N (Bowles 1997; Mineneh & Gilmour 
2020).    
 
2.3 Sensitivity Analysis  

 
After setup of PLAXIS 3D model, sensitivity analysis was 
carried out to assess the effect of different parameters. The 
parameters that may affect the PLAXIS model results are 
model parameters (model dimensions & mesh sizes), 
footing parameters (density, thickness, Young’s modulus, 
Poisson’s ratio), and soil parameters (internal friction 
angle, cohesion, Young’s modulus, Poisson’s ratio, unit 
weight, strength reduction factor - Rinter).  

Sensitivity analysis was not performed for model size, 
and most of footing and soil parameters for the reasons 
discussed below.   

Boundary effects on bearing capacities are negligible 
for offset distances from footing edge of about 2 to 3 times 
footing width laterally and about 4 times footing width 
vertically (Bowles 1997). In the PLAXIS simulations for 
1mx1m and 3mx3m footings, a model size of 
63mx63mx15m (6m Refinement Zone) was used which 
has minimum offset distance of 10 times footing width 
laterally and 5 times footing width vertically.  

For 1mx1m footing size, few simulations were also 
conducted using a model size of 21mx21mx5m (2m 
Refinement Zone) which will reduce the mesh sizes while 
keeping fairly similar number of meshes as the larger 
model size. The smaller model size for 1mx1m footing 
lowered the measured bearing capacities by about 10%. 

A typical rigid, reinforced concrete footing has Young’s 
modulus of about 30 GPa, and Poisson’s ratio of about 
0.15. These typical values were used in the numerical 
simulations as they don’t vary significantly in practice. 

The footing load was applied by prescribing a uniform 
displacement on the footing plate to ensure rigidity of the 
footing. Thus, the effect of footing thickness will be 
eliminated as the footing plate will behave as rigid 
regardless of its thickness. In addition, a largest practical 
footing thickness of 1 m was used to further enforce rigid 
behavior. 

Poisson’s Ratio (ν) of 0.495 was considered for 
cohesive soil to model undrained condition. A ν value of 
0.33 was used for all cohesionless soil since its variation 
will not have significant effect on bearing capacity values. 
Unit weight of 20 kN/m3 was considered for all soil types 
and simulations as it will not vary significantly. 

The interface surface between the footing plate and soil 
was introduced to properly model the soil-structure 
interaction and abrupt change of footing load from plate to 
adjacent soil. Since finest surface mesh is desired for such 
modeling, the smallest possible mesh coarseness factor 
(CF) of less than 0.035 was used for the interface surface. 
The interface surface was also modeled with similar 
properties of the soil by setting the Rinter value to 1.    
 
2.3.1 Sensitivity for Cohesionless Soil  
 
Sensitivity analysis was completed for mesh sizes and 
selected input parameters as presented below. 
 
2.3.1.1 Global Mesh Size  

 
Five options of global mesh sizes are available in PLAXIS 
3D, namely Very Fine, Fine, Medium, Coarse and Very 
Coarse. The coarse mesh sizes were not considered as the 
simulation results may not be accurate even though the 
analyses would take less computation time. In order to 
determine optimum global mesh size, sensitivity analysis 
was carried out for 1mx1m and 3mx3m footing sizes to 
compare Fine and Medium mesh sizes keeping other 
inputs similar.  

Less than 5% difference of ultimate capacity was 
observed between Fine and Medium global mesh sizes. 
Thus, a Fine global mesh size was considered for the 
simulations in this research. Further refining of mesh size 
was investigated for the upper portion of soil using mesh 
Refinement Zone (Figure 1) as discussed below.     
 
2.3.1.2 Mesh Refinement Zone 
 
A mesh Refinement Zone was introduced for the upper 
portion of soil layer, as shown in Figure 1, to get flexibility 
to refine the mesh sizes within the wedge shear failure 
zone of the soil. The mesh size of the Refinement Zone 
was modified using its coarseness factor (CF) which is a 
multiplier to the global element size. A CF of less than unity 
will decrease the local mesh size from the global.  

Other inputs being the same, simulations were carried 
out for Refinement Zone CF values varied between 1 & 0.3 
for 3mx3m footing size. Similar load-deformation curves 
were obtained despite the variation of CF values. A 
reasonable Refinement Zone CF value of 0.7 was selected 
for the simulations of 3mx3m footings. 

Sensitivity analysis was also carried out for 1mx1m 
footing by varying the Refinement Zone CF between 0.3 



 

and 1, and no effect was observed on the load-deformation 
curves. Thus, appropriate CF values within the above 
range were used to complete the simulations in reasonable 
computational time. 
 
2.3.1.3 Plate Mesh Size 
 
The effect of footing plate mesh size on numerical results 
was investigated by varying the plate CF between 0.1 & 
0.04 for footing sizes of 3mx3m. It should be noted that the 
smallest possible CF value in PLAXIS3D was 0.03125.  

Minor differences in bearing capacity of 5% for 3mx3m 
footing was obtained. Thus, the smaller plate CF values of 
0.04 to 0.045 were considered for the numerical 
simulations in this research.  

 
2.3.1.4 Interface Surface Mesh size 
 
Since the interface surface was required for proper 
modeling of the soil-footing interaction and abrupt change 
of footing pressure, finest mesh is desired for the interface 
surface. Thus, the smallest coarseness factor (CF) of less 
than 0.035 was assigned to the interface surface of the 
numerical simulations in this research.  

However, some sensitivity tests were carried out to 
understand the effect of interface surface mesh size on the 
bearing capacity results. It was concluded from the 
sensitivity test results that the interface surface mesh size 
would affect the numerical result if it is finer than the plate 
mesh size. This finding supports the necessity of interface 
surface finest than the footing plate and soil. 

   
2.3.1.5 Soil Elastic Modulus and Footing Unit Weight 
 
Sensitivity analysis was carried out for different values of 
soil elastic modulus to investigate its influence on the 
numerical results. The results show that the soil modulus 
influences the load-deformation curves, but the ultimate 
load capacity appears to be the same regardless of soil 
modulus value. 

Sensitivity analysis was also carried out for different 
values of soil unit weight to investigate its influence on the 
numerical results. The results show that the bearing 
capacity of tests with no footing weight are higher than the 
tests with footing weight by the amount equal to the weight 
of the footing. Thus, the footing weight will reduce the 
measured bearing capacity by the amount equal to its 
weight. For simplicity, no footing weight was considered in 
the numerical simulations of this research. 
 
2.3.2 Sensitivity for Cohesive Soil  
 
Sensitivity analysis was also completed for mesh sizes and 
soil elastic modulus in cohesive soil. 

Global mesh sizes determined for cohesionless soil in 
Section 2.3.1.1 were also used for cohesive soil. 

Sensitivity analysis of refinement zone mesh sizes for 
cohesive soil was carried out by varying the Refinement 
Zone CF between 0.2 and 1 for cases of 1mx1m and 
3mx3m footing sizes. The load-deformation curves 
obtained from all analyses within each footing size appear 

to be similar. Thus, similar refinement zone mesh sizes as 
the cohesionless soil, Section 2.3.1.2, were used.  

The plate coarseness factor (CF) was varied between 
0.04 and 0.1 for 3mx3m footing, which resulted in similar 
bearing capacity. Thus, the smaller plate CF values of 0.04 
to 0.045 were used as indicated in Section 2.3.1.3.  

Sensitivity analysis was carried out for different elastic 
modulus of cohesive soil for both 3mx3m and 1mx1m 
footing sizes. Similar result was obtained as discussed in 
Section 2.3.1.5. 
 
2.4 Model Validation and Calibration 
 
To validate the numerical model, the bearing capacity 
values determined from the simulations were compared 
with the conventional bearing capacity equations of 
Terzaghi (1943) and Meyerhof (1963). The limited 
available small-scale footing experiments could not be 
used for validation or calibration because of a scale effect.  

The ultimate capacity in the simulations was taken from 
the load-deformation curves when the load approaches to 
an asymptote value at large deformation mostly after 0.2 to 
0.3B.  

The conventional bearing capacity equations are given 
in Eq. 3 for cohesionless soil and in Eq. 4 for cohesive soils.  
 

qu= ½ γ B NγSγ      [3]
 
qu= cu NcSc       [4]
 
Sγ was 0.8 for Terzaghi (1943). Nc was 5.7 for Terzaghi 

(1943) and 5.14 for Meyerhof (1963). Sc was 1.3 for 
Terzaghi (1943) and 1.2 for Meyerhof (1963). The original 
papers can be referenced for expressions of Nγ and 
Meyerhof’s Sγ. 

The bearing capacity values obtained from the 
simulations are compared with the values calculated by 
Terzaghi and Meyerhof equations in Figure 2 for 
cohesionless soil and in Figure 3 for cohesive soil. 

 
 

   
Figure 2. Comparison between numerical and analytical 
bearing capacities for cohesionless soil. 



 

 
 Figure 3. Comparison between numerical and analytical 
bearing capacities for cohesive soil. 
 
 

The conventional equations generally predict the 
simulation results at lower shear strength values and 
scatter slightly with the increase of strength parameter 
values. Meyerhof is the upper bound solution while 
Terzaghi is the lower bound solution for cohesionless soil, 
and vice versa for cohesive soil. 
 
2.5 Stability of Ground Slopes 
 
The numerical simulations to study footing bearing capacity 
were carried out on stable ground slopes against global 
slope failure. For cohesionless soil, the slope angle (β) was 
varied equal or less than the angle of repose which is equal 
to the soil internal angle of friction (ϕ). For cohesive soil, 
slope stability analysis was carried out to determine the 
maximum possible slope angle and height based on 
Taylor’s slope stability chart method (Braja M. Das, 2010).  

For the case of cu = 25 kPa, a maximum slope angle of 
53 degree can be achieved with a maximum slope height 
of 7m. Thus, for numerical simulations using cohesion of 
25 kPa, conservative slope angles of not more than 30 
degree and slope height of 7 m were considered. Also, the 
shear failure was examined not to extend below 7 m depth 
to ensure the full slope effect on the bearing capacity was 
considered. 

For cu = 50 kPa, a maximum slope angle of 50 degree 
can be achieved with a maximum slope height of 13.9m. 
Thus, for numerical simulations using cohesion of 50 kPa, 
conservative slope angles of not more than 30 degree were 
considered for slope height of 15 m. For cohesions of 100 
kPa and 200 kPa, slope stability analysis was not needed 
as maximum slope angle of 35 degree and slope height of 
15 m were considered in the numerical simulations.   

To confirm the Taylor’s chart analysis, slope stability 
analysis was also carried out using limit equilibrium method 
using the above geometries for undrained cohesion of 25 
kPa and 50 kPa. 

 
 

3 RESULTS AND DISCUSSIONS  
 
3.1 Evaluation of Existing Bearing Capacity Equations 

 
3.1.1 Hansen (1970) and Vesic (1975) 
 
Hansen (1970) and Vesic (1975) bearing capacity 
equations with ground modification factors were evaluated 
with the numerical simulation data in this paper. 

 
3.1.1.1 Cohesionless soil 

 
As shown in Figure 4, there is a minor difference between 
Hansen and Vesic predictions. However, both methods 
significantly underpredict the bearing capacity compared to 
the present research for footings at the crest of a slope. 
The theoretical prediction of ground modification factor is 
lower than the simulation data at fairly constant value of 
0.25 to 0.3. Thus, the theoretical modification factors 
provided by Hansen and Vesic can be improved by adding 
an average constant term of 0.275. Also, ground 
modification factor determined from the simulation data 
appears to be fairly independent of the soil friction angle 
and footing size for the case of no setback distance. This 
observation confirms the theoretical ground modification 
factors of Hansen and Vesic which depend only on the 
slope angle and not the soil friction angle. 
 
 

 
Figure 4. Ground modification factor (gγ) versus Slope 
Angle (β) 
 
 
3.1.1.2 Cohesive Soil 
 
A ground modification factor for the cohesion term was not 
obtained from Hansen (1970) publication. Thus, only Vesic 
(1975) was used to predict the simulation data as shown in 
Figure 5. The numerical simulation data in Figure 5 do not 
show significant effect of ground slopes on bearing 
capacity with the maximum reduction of bearing capacity 
being only 11% for slope angle of 350 and cu of 200 kPa. 
Vesic ground factor was generally lower than the 
simulation data and increases with slope angle. 
  



 

 
Figure 5. Ground modification factor (gc) versus Slope 
angle (β). The data points overlap for cohesions of 25kPa, 
50kPa, 100kPa and 200kPa. For slope angle of 350, 
simulations were conducted only for cohesion of 200kPa.    
 
3.1.2 Bowles (1997)   

 
Bowles (1997) bearing capacity equation with modification 
of bearing capacity factors is evaluated with the numerical 
simulation data in this research. 

 
3.1.2.1 Cohesionless Soil 
 
The numerical simulation data and predictions of Bowles 
(1997) equation for cohesionless soil are presented in 
Figures 7 to 10. The ground modification factor (gγ) 
calculated from Bowles equation varies linearly from a 
smallest value at zero setback distance to a value of 1 at 
setback distance of twice the footing width. The reduction 
factor converges to 1 regardless of slope angle and internal 
friction angle. On the other hand, the ground modification 
factor (gγ) determined from the numerical simulation data 
generally varies in hyperbolic trend instead of linear trend. 
Thus, Bowles approach doesn’t predict the general trend 
of the variation of the ground factor as well as provides 
significantly low values of ground factor or bearing capacity 
on slope. The only exception is when the measured ground 
factor from the simulation data falls below 0.5 for high slope 
angles such as 350 as shown in Figure 10. Based on 
Bowles prediction of individual simulation data, it estimated 
the bearing capacity on slope -32 to +26 % of the 
simulation data. 
 
3.1.2.2 Cohesive Soil  
 
The numerical simulation data and predictions of Bowles 
(1997) equation for cohesive soil are presented in Figures 
12 to 15. Similar to the case of cohesionless soil, Bowles 
prediction of the ground modification factor for cohesive 
soil varies linearly from a smallest value at zero setback 
distance to a value of 1 at setback distance of about 0.75 
times the footing width. It converges to 1 regardless of 
slope angle and undrained cohesion. On the other hand, 
the ground modification factor determined from the 
numerical simulation data generally varies in hyperbolic 

trend. The numerical data also show the convergence of 
the reduction factor to 1 at about 0.75 times the footing 
width. Bowles approach resulted in significantly lower 
values of ground factor and bearing capacity on slope. 
Bowles estimated the bearing capacity on slope by 
average of -10 % of the simulation data. 
 
3.2 Proposed Model  
 
New ground modification factors gγ

A and gc
A are proposed 

for the friction and cohesion terms of the conventional 
bearing capacity equation, respectively, based on the 
numerical simulation data presented in this paper.  

 

3.2.1 Proposed Ground Modification Factor for 
Cohesionless Soil (gγ

A) 
 
The newly proposed ground modification factor was 
determined by best fitting the data points with a surface of 
polynomial function. The numerical data points and the 
best fit surface are shown in Figure 6. The best-fit surface 
was obtained with regression analysis using MATLAB 
version 9.1 (R2016b).  In MATLAB, curve fitting toolbox 
provides an app and functions for fitting curves and 
surfaces to data. One can create a Polynomial surface of 
up to degree five (5). Also, the custom equation window 
allows users to specify surface fitting equations for 
nonlinear regression. In this research, the simulation data 
were processed in terms of b/B, Rγ, and gγ (as defined in 
next paragraphs), and the surface is fitted interactively by 
loading the excel data at the MATLAB command line. gγ is 
selected as a dependent variable while b/B and Rγ are 
selected as independent variables in the curve fitting app. 
Then, different model types were evaluated using the fit 
category drop-down list. A best fit surface with high 
coefficient of correlation is obtained using a polynomial 
equation to the power of two (2) as given in Eq. 5 below. 
 
gγ

A = 0.3755 +(0.5512 x b/B) + (1.876 x Rγ) – (0.6976 x b/B 
x Rγ) – (0.1238 x (b/B)2) – (1.619 x Rγ

2)                          [5] 
 
For b/B ratio � 2, gγ

A = 1 
 
R2 = 0.9384, Where R2 is the coefficient of determination 
 
 

 
Figure 6. Data points and best fit surface for cohesionless 
soil. 



 

The b/B ratio refers to the ratio of setback distance (b) 
between slope crest and footing outside edge to the footing 
width (B). The ground modification factor (gγ) refers to the 
ratio of footing capacity on slope (Fs) to footing capacity on 
plane ground (Fp).  

The presence of slope boundary near footing results in 
a partial development of the passive zone, thus resulting in 
a reduced bearing capacity. In this paper, the reduction in 
passive resistance due to the presence of slope is 
computed following Bowles (1997) approach, which relates 
the resistance reduction to the ratio “Rγ” of minimum 
passive pressure coefficient (Kmin) to maximum passive 
pressure coefficient (Kmax). The pressure coefficients are 
computed using Coulomb passive pressure theory and 
considering β = (-) for Kmin, β = (0) for Kmax, and ϕ=δ for 
both Kmin and Kmax. The ratio “Rγ” considers the effects of 
both the soil internal friction angle (ϕ) and slope angle (β). 
 
3.2.1.1 Evaluation of Proposed Ground Factor (gγ

A) 
with Simulation Data 

 
The bearing capacity reduction factors due to slope (which 
are equivalent to the ground factors) obtained from the 
numerical simulations were compared with the predictions 
of the proposed model in Eq. 5 as presented in Figures 7 
to 10. 
 
 

 
Figure 7. gγ versus b/B for ϕ of 270 
 
 

It can be noted from the above figures that good 
agreement between the proposed model and simulation 
data for the ground factor (gγ) was achieved both in terms 
of the trend and actual values. At some data points, larger 
error of up to ±19% was encountered; however, the 
average error does not exceed ±10 % for both 1m x 1m 
and 3m x 3m footing size. The proposed model is a 
convergent function. As the setback distance from slope 
crest increases, the influence of slope diminishes, and in 
general at b/B=2, the slope face imposes no further 
influence and the proposed model approaches to unity. 
The proposed model improves Bowles approach using 
non-linear equation. 

 
Figure 8. gγ versus b/B for ϕ of 300 

 

 

 
Figure 9. gγ versus b/B for ϕ of 330 
 
 

 
 Figure 10. gγ versus b/B for ϕ of 370 



 

3.2.2 Proposed Ground Modification Factor for 
Cohesive Soil (gc

A)  
 

In similar approach to the cohesionless soil, a new ground 
modification factor for cohesive soil was determined by 
best fitting the data points with a surface of polynomial 
function using MATLAB. The numerical data points and the 
best fit surface are shown in Figure 11. A best-fit surface 
with a high coefficient of correlation is obtained using a 
polynomial equation to the power of three (3) as given in 
Eq. 6 below. 

 
gc

A = 0.9914 + (0.1055 x b/B) – (0.1364 x Rc) + (0.2289 x 
b/B x Rc) – (0.1671 x (b/B)2) – (0.08003 x (b/B)2 x Rc) + 
(0.05823 x (b/B)3                                                                 [6] 
 
For b/B ratio ≥ 0.75, gc

A = 1 
 
R2 = 0.9328, Where R2 is the coefficient of determination 
 
 

 
Figure 11. Data points and best fit surface for cohesive soil 
 
 

For cohesive soil in undrained condition, both Kmin and 
Kmax (defined in the previous section) will be 1 for slope 
angles β = (-) or (0). Thus, the reduction of passive 
resistance in cohesive soil due to the presence of slope 
“Rc” is considered to be a function of tanβ which is 
proportional to the loss of soil mass (overburden pressure) 
due to the presence of slope. 
 
3.2.2.1 Evaluation of Proposed Ground Factor (gc

A) 
with Simulation Data 

 
The bearing capacity reduction factors due to slope (which 
are equivalent to the ground factors) obtained from the 
numerical simulations of cohesive soil were compared with 
the predictions of the proposed model in Eq. 6 as 
presented in Figures 12 to 15.  

As observed in the figures, the proposed ground 
modification model predicts both the hyperbolic trend and 
the data values of the bearing capacity reduction factors 
(ground modification factors) obtained from the numerical 
simulations. It is also observed that the ground factors from 
the numerical simulation converge to unity at b/B values in 
the range of 0.75 to 1. 

  
Figure 12. gc versus b/B for cu of 25 kPa 
 
 

 
Figure 13. gc versus b/B for cu of 50 kPa  
 
 

 
Figure 14. gc versus b/B for cu of 100 kPa 
 
 

 
Figure 15. gc versus b/B for cu of 200 kPa 



 

3.3 Failure Mechanism and Stress Distribution 
 
Examples of slope effect on the failure mechanism are 
presented in Figures 16.  
 
 

 
Figure 16. Example of formation of passive zones. 
  
 

The typical contact pressure distributions for rigid 
footings on cohesionless and cohesive soils are also 
observed in the simulations as shown in Figures 17 & 18. 
 
 

 
Figure 17. (a) Stress distribution, (b) Footing deformation 
beneath a rigid footing on cohesionless soil 
 
 

 
Figure 18. Stress distribution beneath a rigid footing on 
cohesive soil 
 
 
4 CONCLUSIONS AND RECOMMENDATIONS 
 
For cohesionless soil, Hansen (1970) and Vesic (1975) 
equations significantly underpredict the bearing capacity of 
footings placed at crest of slope. The ground modification 
factors provided by Hansen (1970) and Vesic (1975) can 
be improved by adding an average constant term of 0.275. 

For cohesive soil, Vesic (1975) equation slightly 
underestimates the bearing capacity. 

Bowles (1997) approach enables to calculate bearing 
capacity for footings with setback distance of greater than 
zero from slope crest. However, Bowles approach doesn’t 
predict the general trend of the variation of ground factor 
with setback distance as well as provides significantly low 
or high values of ground factor or bearing capacity. 

Improved ground modification factors are proposed 
which consider shear strength parameters, set back 
distance, footing size and slope angle. These modification 
factors can be implemented in the general bearing capacity 
equation.  

The improved ground modification factors generally 
vary in hyperbolic trend with setback distance. They 
converge to unity beyond a critical set back ratio (b/B) of 2 
for cohesionless soil and around 0.75 for cohesive soil, 
which are in agreement with Bowles (1997) approach. 
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