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ABSTRACT 
The construction of new structures on existing pile foundations can significantly reduce the overall project costs. The reuse 
of foundations requires information on the embedded depth of existing piles, which is not always known. In this paper, a 
new method based on the guided wave theory is proposed to effectively estimate the pile length of unknown foundations 
for the first time. In this method, a three-dimensional guided wave model of a cylindrical pile is built by the spectral element 
method. Then, a modified Ridders' algorithm is proposed to solve the spectrum relation obtained by the guide wave model. 
The phase difference of the two signals collected via two sensors placed on the lateral side of the test pile can be calculated. 
Based on the periodic analysis of the relationship between the phase difference and the wavenumber, the pile length can 
be determined. Finally, through the synthetic data, the effectiveness and accuracy of the proposed method are validated. 
 
RÉSUMÉ 
La construction de nouvelles structures sur des pieux existants peut réduire considérablement les coûts globaux du projet. 
La réutilisation des fondations nécessite des informations sur la profondeur d'encastrement des pieux existants, qui n'est 
pas toujours connue. Dans cet article, une nouvelle méthode basée sur la théorie des ondes guidées est proposée pour 
estimer efficacement la longueur des pieux de fondations inconnues pour la première fois. Dans cette méthode, un modèle 
d'onde guidée tridimensionnel d'un pieu cylindrique est construit par la méthode des éléments spectraux. Ensuite, un 
algorithme de Ridders modifié est proposé pour résoudre la relation spectrale obtenue par le modèle d'onde guide. La 
différence de phase des deux signaux collectés via deux capteurs placés sur le côté latéral du pieu d'essai peut être 
calculée. Sur la base de l'analyse périodique de la relation entre la différence de phase et le nombre d'onde, la longueur 
du pieu peut être déterminée. Enfin, à travers les données synthétiques, l'efficacité et la précision de la méthode proposée 
sont validées. 
 
 
 
1 INTRODUCTION 
 

There is a large number of unknown foundations and 
piles in urban and rural areas. As of 2005, around 60,000 
bridges with an unknown foundation in the United States 
were identified (Yousefpour et al. 2014). It is most likely 
that more unknown foundations have not been identified or 
reported by the stakeholders (Stein and Sedmera 2006). In 
most cases, the as-built or design plans are no longer 
available. Hence, there is no information on the type, 
geometry, length, or bearing capacity of these foundations. 

Reuse of foundations in new construction projects can 
significantly reduce the project costs and contribute to the 
sustainable development goals. Therefore, the 
characterization of unknown foundations and piles is of 
great importance. Pile length is an important indicator to 
determine the degree of scour and the bearing capacity of 
the pile (He et al. 2019). 

Several methods have been proposed to evaluate 
unknown foundations and piles. These methods can mainly 
be divided into two categories: destructive testing and non-
destructive testing (NDT). Destructive testing uses direct 
methods such as probing, auguring, drilling, or digging to 
possibly determine the properties of the foundation under 
investigation. Compared with destructive testing, NDT 
methods are preferred since they are cost-effective and 
safe. NDT methods can also be grouped into two types: 
surface methods and subsurface methods. In surface 
methods, both the load source and the response receivers 

are placed at or near the ground surface from an 
accessible area of the foundation structure. The only 
requirement to perform the surface NDT tests is to have 
access to an exposed area of the foundation directly or on 
a member connected to the foundation (Gupta et al. 2021). 
In subsurface methods, at least one borehole (or called an 
access tube) is installed during construction alongside or 
within the bridge substructure. The incident signal is 
emitted into the test object (if needed) and is received by 
transducers placed within the borehole (Hola and 
Schabowicz 2010). The most popular subsurface methods 
include parallel seismic testing (PST), borehole radar 
testing (BRT), borehole sonic testing (BST), cross-hole 
sonic logging (CSL), thermal integrity profiling (TIP), etc. In 
comparison with subsurface methods, surface methods 
are highly praised because of the advantage of minimal 
intrusion, convenience, and lower cost. 

For pile length estimation, in particular, numerous 
surface NDT techniques have been developed. For 
example, the Sonic echo (SE) and impulse response (IR) 
techniques are the earliest methods for pile length 
estimation. In these two methods, longitudinal stress (i.e. 
acoustic) waves are generated by an impact force on the 
top of the foundation. The stress waves will reflect at 
interfaces between materials with significant changes in 
acoustic impedance. As such, the responses collected by 
a nearby receiver(s) can be analyzed for the pile integrity 
analysis and pile length estimation. SE uses the responses 
in the time domain while IR utilizes the responses 



 

transformed into the frequency domain (Jozi et al 2014). 
Based on the SE/IR techniques, some signal processing 
methods are applied to improve the accuracy for pile length 
estimation. Kim et al (2020) used the conventional non-
linear amplification method and wavelet packet transform 
to process the impact echo data for pile defect detection. 
Ni et al. (2012) utilized the continuous wavelet transform to 
enhance the characteristics of the echo signals and the 
proposed method is used for pile or drilled shaft length 
estimation and pile integrity test. Ultra-seismic testing 
(UST) has been also used to determine the length of piles. 
In this technique, multiple receivers are mounted on the 
side of the exposed part of the test pile and the same way 
of excitation used in SE or IR can be utilized here. Wang 
and Hu (2015) utilized the UST method with electrical 
resistivity tomography to estimate the depth of the concrete 
foundation on two bridges. 

The bending wave-based method is proposed to 
address the case when the top pile is not accessible. In this 
technique, the lateral impact is applied to the exposed part 
of the test pile, and the dispersive or bending waves can 
be generated. The short kernel method (SKM) was 
proposed by Douglus and Holt (1993) for data collection. 
This method does not perform well for piles buried in deep 
embedments. Some signal processing methods are then 
used to process the responses collected on the lateral side 
for pile length estimation, such as Hilbert Huang transform 
(Farid 2012) and complex continuous wavelet transform (Ni 
et al 2019). Samu and Guddati (2019 and 2020) proposed 
a spectral method that maps the wavenumber and the 
phase difference. This method provides a simple way for 
pile estimation by observing the plot of the wavenumber 
and the phase difference. However, since the dispersion 
relation theory used here is based on a one-dimensional 
(1D) beam model, the accuracy is limited, and especially 
when the embedded depth of the pile is deep, the accuracy 
is worse.  

In this paper, a new pile length estimation method is 
proposed by combing the phase difference analysis and 
the 3D guided wave theory for the first time. The guided 
wave-based dispersion relation is obtained by the spectral 
element method (SEM). A modified Ridders’ algorithm is 
proposed for the root-searching of the spectrum relation 
determined by the guided wave model. The spectrum 
relation is then used to form the dispersion analysis 
diagram of the wavenumber with regard to the phase 
difference. According to the relation between the 
wavenumber and phase difference calculated by collected 
lateral vibration responses, the pile length can be 
estimated. Through numerical analysis, the effectiveness 
and the accuracy of the proposed method can be validated. 
More particularly, the proposed method shows a good 
accuracy in estimating the length of deep foundations. 

 
 

2 METHODOLOGY 
 
2.1 Methodology overview 
 
The holistic process of the proposed method for pile length 
estimation based on the phase difference analysis and the 
3D guided wave model is shown in Figure 1. 

 
Figure 1. The schematic flowchart of the proposed 
methodology.  
 
 
2.2 Experimental setup and data acquisition 
 
The schematic diagram of the experiment setup for pile 
length estimation using the lateral-side responses and the 
top-surface responses is shown in Figure 1(a). For a pile 
under investigation, if there is an exposed part, the signals 
at the lateral-side can be used. In this case, two sensors, 
denoted by 𝑆! and  𝑆", are placed on the lateral side of the 
exposed part of the pile. The distance between 𝑆! and the 
pile toe, and the distance between 𝑆" and the pile toe, are 
denoted by 𝐿! and 𝐿", respectively. In this case, the impact 
can be applied on the pile top. The vibration responses 
acquired by the sensors 𝑆! and  𝑆" are denoted by 𝑅! and  
𝑅", respectively.  
 
2.3 Phase difference calculation 
 
The signal 𝑅! and 𝑅" in the time domain can be transferred 
into the frequency domain by the Fast Fourier transform, 
and the corresponding signals in the frequency domain are 
denoted by 𝑅! (𝜔 ) and 𝑅"(𝜔) , respectively. The phase 
difference of these two signals, denoted by ∆𝜙, can be 
defined as, 

 
 ∆𝜙 = 𝐼𝑚𝑎𝑔	(log	(𝑅!(𝜔) − log3𝑅"(𝜔)4, [1] 
 

where Imag (.) means the imaginary part of the input signal 
and log (.) is the logarithmic function; the phase difference 
can be transferred into the range [−𝜋, 𝜋]. 
 
2.4 Spectrum relation of a cylindric pile 
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The propagation of the guided wave follows the Naiver-
Stokes equation, 

 
  (𝜆 + 𝜇)∇∇ ⋅ 𝐮 + 𝜇∇"𝐮	 = 	ρ 𝝏

𝟐𝒖
𝝏𝒕𝟐
.  [2] 

In this equation, u is the displacement field; ρ is the 
density of the material of the pile; 𝜆 and 𝜇 are the Lamé 
coefficients, which can be calculated as  

 
  𝜆	 = 	 𝑬𝝊

(𝟏*𝝊)(𝟏,𝟐𝝊)
, 𝜇	 = 	 𝑬

𝟐(𝟏*𝝊)
    [3] 

 
in which E is the Young’s modulus; 𝜐 is the Poisson’s ratio 
of the pile material. The Helmholtz’s decomposition can be 
used to solve the displacement field u, which can be 
represented by two potentials 𝜙  and 𝝍 . 𝜙	 is the scalar 
longitudinal component and 𝝍  is the shear vector 
component. There is, 

 
  𝐮	 =	 ∇𝜙 + ∇ × 	𝝍                  [4] 
 

where ∇ ∙ 𝝍	 = 	𝟎 . Based on the Bessel function, the 
displacement u can be estimated by 

 
𝑢. =	 [𝑘/𝐽!(𝑘/𝑟)𝐴 + 𝑖𝑘𝐽!(𝑘0𝑟)𝐵]𝑒1(23,45),              [5a] 
𝑢3 =	 [𝑖𝑘𝐽6(𝑘/𝑟)𝐴 + 𝑘0𝐽6(𝑘0𝑟)𝐵]𝑒1(23,45),              [5b] 
 

in which k is the wavenumber and 𝜔  is the angular 
frequency. 𝑢.  and 𝑢3  are the displacement in r and z 
directions, respectively; r and z are the variables in the 
cylindrical coordinate system;	𝐽6(. ) and 𝐽!(. ) are the first 
kind Bessel functions at the order 0 and 1, respectively. 
The relation between the stress components and the 
displacement components are as follows, 

 
																			𝜎.3 = 	𝜇(𝝏𝒖𝒓

𝝏𝒛
+ 𝒖𝒛

𝒓
),                [6a] 

																		𝜎33 =	(
𝝏𝒖𝒓
𝝏𝒓
+ 𝒖𝒛

𝒓
+ 𝝏𝒖𝒛

𝝏𝒛
) + 2𝜇 𝝏𝒖𝒛

𝝏𝒛
.              [6b] 

 
Substituting Equation 5 into Equation 6, the stress in 

different directions can be calculated. According to the free 
traction condition of the cylindrical pile, i.e., 𝜎.3 	= 	𝜎33 	=
	0, the following equation can be obtained, 

 
                       M[𝐴, 𝐵]9 	= 	𝟎.               [7] 
 

where M = Q
𝑚!! 𝑚!"
𝑚"! 𝑚""

R ; 𝑚!! = −(𝜆𝑘" + 𝜆𝑘/" +
2𝜇𝑘/")𝐽6(𝑘/𝑟) + 2𝜇𝑘/𝐽!(𝑘/𝑟)/𝑟 ; 𝑚!" = −2𝜇𝑖𝑘𝑘0𝐽6(𝑘0𝑟) +
2𝜇𝑖𝐽!(𝑘0𝑟)/𝑟 ; 𝑚"! = −2𝜇𝑖𝑘𝑘/𝐽!(𝑘/𝑟) ; 𝑚" = 𝜇(𝑘" −
𝑘0")𝐽!(𝑘/𝑟); r is the radius of the pile; 𝑘/  and 𝑘0  are the 
wavenumber of the shear and the longitudinal wave 
respectively. There is, 

 
  𝑘/" =	

4
:$%
− 𝑘",                             [8a] 

  𝑘0" =	
4
:&%
− 𝑘",                             [8b] 

 
Here 𝑐/	and 𝑐0  are the shear and longitudinal wave 

velocity, respectively. Let the homogenous linear equation 
have the non-zero solution, the determinant of M should be 
equal to 0, i.e., |M| = 0. Therefore, the spectrum relation 

between the wavenumber k and the angular frequency 𝜔 
can be built, denoted by 𝐷(𝜔, 𝑘) 	= 	0. Accordingly, this 
equation can be solved by a root-searching algorithm. In 
this paper, a modified Ridders’ algorithm is proposed for 
this purpose. 
2.5 Modified Ridders’ algorithm 
 
When the spectrum relation is built, the modified Ridders’ 
algorithm shown in Figure 2 is used for root-searching. In 
this algorithm, Ω is the given frequency vector, and 𝑉0; is 
the phase velocity, and it can be initialized by the 
dispersion relation curve distribution; step_length is the 
step length of iteration for phase velocity (here it is set as 
0.2). 𝑁/5<0  is the pre-defined maximum iteration number 
and it is set as 10=.  

The design of this algorithm is that at first a range 
formed by two variables with opposite signs is searched by 
iteration; then Ridders’ algorithm is used to perform precise 
searching in the range. 𝐾>  is the vector recording the 
wavenumber found by the proposed method at each 
frequency in the frequency vector Ω. 

 
 

 
Figure 2. The flowchart of the modified Ridders’ root-
searching algorithm. 
 
 
2.6 Pile length estimation based on the dispersion 

analysis 
 
Equation 5 gives the general solution of displacement of 
the guided wave, and here the component 𝑢3 is used as an 
example to show the analysis process for pile length 
estimation. According to Equation 5b, and the definition of 



 

phase difference (Equation 1), the phase difference of two 
signals collected at the position 𝐿!  and 𝐿"  can be 
calculated as, 
 

  ∆𝜙	 = 	𝑘∆𝑧,                                [9] 
 

where ∆𝑧	 = 𝐿! - 𝐿", and the reflected wave is not taken 
into consideration. When the reflected wave is considered, 
the displacement 𝑢3 can be written as, 
 

𝑢3 =	 \𝑖𝑘𝐽6(𝑘/𝑟)𝐴! + 𝑘0𝐽63𝑘0𝑟4𝐵!]𝑒1(23) +
														[𝑖𝑘𝐽6(𝑘/𝑟)𝐴" + 𝑘0𝐽6(𝑘0𝑟)𝐵"]𝑒1(,23),                   [10] 

 
where 𝐴!and	𝐵! are the unknown coefficients responsible 
for the incident wave and 𝐴"  and 	𝐵"  are the unknown 
coefficients responsible for the reflected wave. According 
to the definition of the phase difference, and the Euler’s 
formula, the two signals collected at the position 𝐿! and 𝐿" 
can be simplified as,  
 

 ∆𝜙	 = 	𝑘∆𝑧 + 𝑡𝑎𝑛,!(𝜙(𝐿")) − 𝑡𝑎𝑛,!(𝜙(𝐿!))    [11] 
 
where 𝑡𝑎𝑛,!(. ) is the inverse tangent function, and  
 
 𝜙(𝑧) = ?%*?':@/"23

A()*&(B%*B':@/"23),?'/1C"23
	+ 

																																		 B'/1C"23
(B%*B':@/"23),?'/1C"23/A()*&

                [12] 
 
where 𝜙(𝑧) is a phase-related function and the value of 
𝑄5<E0 is close to the constant 1. Because of this, it can be 
regarded as a periodic trigonometric function and its period 
can be estimated as F

3
. Therefore, the second and third 

terms in Equation [11] can also be regarded as periodic 
functions, and their periods are F

G%
 and F

G'
, respectively. 

Therefore, we can estimate the pile length by the position 
of the sensors placed at 𝐿!  and 𝐿"  according to the 
periodic analysis obtained from the phase difference. 

The periodic analysis is as follows. Two signals are 
considered: signal with reflections, which corresponds to 
Equation 9, in which we can observe its saw-tooth 
waveform and the period 𝑃: is defined as shown in Figure 
3. The angle 𝜃 in the figure is the slope of the curve. As it 
can be seen in Equation 9, the slope of the curve can also 
be related to ∆𝑧. Therefore,  

 
𝑡𝑎𝑛𝜃 =	 F

H+(∆J,2)	
	= 	∆𝑧                               [13] 

 
As such, one obtains 

 
𝑃:(∆𝜙, 𝑘) 	= 	

F
	∆3
	                               [14] 

 
 
 

 
Figure 3. The dispersion analysis diagram of the example 
signal to observe the period.  
 
 

From Figure 3, it can also be seen that the signal with 
reflections brings small oscillations or wiggles on the curve 
without reflections. The period of wiggles is defined as 
𝑃M(∆𝜙, 𝑘). According to the analysis in Equation 12, the 
period of the wiggle can be estimated as the average of F

G%
 

and F
G'

, i.e.,  
 

𝑃M(∆𝜙, 𝑘) 	= 	 (
F
G%
+ F

G'
)/2	                        [15] 

 
Then the quotient of the period can be calculated as, 

 
	𝑅0 =	

H+(∆J,2)
H,(∆J,2)

	                              [16] 
 

According to the relation of 𝐿! , 𝐿"  and ∆𝑧, 𝐿! ,can be 
estimated as,  

 

𝐿! = c
N&*!*ON&%*!

" d∆𝑧                      [17] 

 
From Equation 17, because ∆𝑧 is known, and 𝑅0 can 

be obtained by the two period which can be identified in the 
dispersion analysis diagram, the pile length can be 
estimated by the sensor position 𝐿!. 
 
 
3 VALIDATION 
 
In this work, the synthetic data is generated by a 
commercial finite element software. Three piles buried in 
the soil are studied here. The physical properties and the 
radius of the test pile are presented in Table 1. The pile 
length and the position of the sensors placed on the lateral 
side for each pile are given in Table 2. 
 
 
 
 
 
 



 

 
Table 1. The physical property and the radius of the test 
pile 
 

Parameter (unit) Value 
Density 𝜌(kg/𝑚!) 2200 
Poisson’s ratio 0.25 
Young’s modulus (GPa) 18.77 
Radius (m) 0.5 

 
 
Table 2. The pile length and the sensor position for each 
case 
 

Parameter (unit) Pile 1 Pile 2 Pile 3 
Pile length L(m) 15 20 30 
Sensor position, 𝐿"(𝑚) 14.5 19.5 29.5 
Sensor position, 𝐿#(𝑚) 14.2 19.2 29.2 
Sensor distance, ∆𝑧 (m)  0.3  0.3  0.3 

 
 

In the simulation, the Ricker wavelet is used as the 
excitation function, and the excitation frequency is set as 
10 kHz. The sampling rate is 10P	𝐻𝑧, and the sampling rate 
0.05 s, so for each sensor a time-series signal with 5,000 
samples can be obtained. The vibration signal collected 
here is the velocity. The spectrum relation is obtained by 
𝐷(𝜔, 𝑘) 	= 	0 built in Equation 7. 

Figure 4 shows the first five branches of the dispersion 
relation. The dispersion relation is the relation between the 
phase velocity (v) and the angular frequency (𝜔), which can 
be converted by the spectrum relation, using 𝑣	 = 	4

2
. In this 

figure, q indicates the branch number; p indicates the mode 
type of the guided wave, p=0 indicates the dispersion 
relation using the longitudinal mode, and L refers to the 
longitudinal mode. When the impact is placed on the pile 
top, the longitude mode of the guided wave should be used 
and the first branch dispersion L (0,1) is the predominant 
one among all branches (Chao 2002). In the low-frequency 
range, only the dispersion relation L (0,1) exists. Therefore, 
the branch L (0,1) is selected for pile length estimation.  

 
 

 
Figure 4. The first 5 branches of the dispersion relation of 
the test pile. 
 
 

The dispersion analysis diagram can be obtained using 
the phase difference of the two signals collected on the 
lateral side of each pile. According to the spectrum relation 
L (0,1) in Figure 4, the dispersion analysis diagram to show 
the relation between the wavenumber k and the phase 
difference can be obtained. The dispersion relation 
diagram for each pile has been shown in Figure 5.  
From the curve of each pile, it can be observed that the 
cycle period can be clearly obtained, and a series of 
wiggles can also be identified. According to this figure, in 
each curve, the cycle period 𝑃:(∆𝜙, 𝑘)  and the wiggle 
period 𝑃M(∆𝜙, 𝑘)  can be identified. The wiggle period 
𝑃M(∆𝜙, 𝑘) can be read at the different wavenumber, to get 
a stable value, the average of those values with the outlier 
removed can be used to indicate the wiggle period 
𝑃M(∆𝜙, 𝑘). Then according to Equation 17, the position of 
the sensor position 𝐿! can be estimated. 
 
 

 
Figure 5. The dispersion analysis diagram of the three 
piles. (a). Pile 1. (b). Pile 2. (c). Pile 3.  

 
 
Since the distance between the sensor 𝑆! and the pile 

top is known in the exposed part of the test pile, therefore 



 

the pile length can be determined by the estimated value 
𝐿!. The error rate of the estimation result for each pile is 
given in Table 3. The result shows the proposed method 
can achieve an accurate estimation of the pile length. 
Therefore, the effectiveness and accuracy of the proposed 
method can be validated.  
 
Table 3. The result of the absolute error rate 
 

Piles Absolute error rate 
Pile 1 0.023 
Pile 2 0.035 
Pile 3 0.039 

 
 
4 CONCLUSION 
 
This paper proposes a novel pile length estimation method 
based on the guided wave theory and the phase difference 
analysis of two signals collected on the lateral side of the 
test pile. The guided wave theory-based dispersion relation 
is built by the spectral element method, and the modified 
Ridders’ algorithm is proposed to perform the root-
searching of the dispersion relation. According to the 
analysis of the phase difference, the periodic pattern of the 
dispersion analysis diagram of the wavenumber as a 
function of the phase difference is then used for pile length 
estimation. Future work should be focused on the case 
where the signals can only be collected on the top surface, 
or how to estimate the pile length when only one signal is 
used for pile length estimation. 
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