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ABSTRACT 
3D scanning is usually used to obtain information about the surface of a given rock joint, but it is often impractical to scan 
a subsurface fault or rock joint due to the lack of access. The goal of this study is to reconstruct surface roughness of a 
large rock joint using limited and dispersed sample measurements. The process of predictions encompassed Kriging 
interpolation method along with variogram modelling. Five joint surfaces were reconstructed from 4, 7, 9, 11 and 13 
samples distributed all over the surface. The results showed that the geostatistical procedure shows reasonable results 
when compared with the original surface. It was shown that the prediction approach is effective with nine samples that 
cover 54% of the whole area. This proposed method in this paper can characterize surface roughness while also 
addressing the scale dependence issue. 

 
RÉSUMÉ 
La numérisation 3D est souvent utilisée pour obtenir des informations sur la surface d'un joint rocheux donné. Mais il est 
souvent peu pratique de numériser un joint rocheux souterrain si c’est inaccessible. L'objectif de cette étude est de 
reconstruire la rugosité de surface d'un grand joint rocheux en utilisant des mesures d'échantillons limitées et dispersées. 
Le processus de prédiction englobe la méthode d'interpolation de Kriging ainsi que la modélisation des variogrammes. 
Cinq surfaces de joint ont été reconstruites à partir de 4, 7, 9, 11 et 13 échantillons répartis sur toute la surface. Les 
résultats ont montré que la procédure géostatistique donne des résultats assez précis par rapport à la surface originale. Il 
a été montré que l'approche de prédiction est efficace en utilisant neuf échantillons qui couvrent 54% de la surface totale. 
La méthode proposée dans cet article peut caractériser avec précision la rugosité de surface tout en abordant le problème 
de la dépendance d'échelle. 
 
 
 
1 INTRODUCTION 
 
     The shear strength of rock discontinuities is proportional 
to the friction generated by contact between two surfaces 
during shear movement; thus, the roughness 
characteristics of discontinuity surfaces significantly affect 
the discontinuity shear behaviour (Jaeger., 1959). Hence, 
it is crucial to investigate the roughness characteristics of a 
joint surface. Over the last decades, many studies have 
focused on the characterization of the morphology of rock 
fractures. In 1973, Barton was the first to consider the effect 
of natural roughness on joint strength, introducing the term 
"joint roughness coefficient" JRC values (Barton., 1973). It 
was further developed by (Barton and Choubey, 1977) by 
specifying ten standard roughness profiles. This approach 
is adopted as the standard method for assessing joint 
roughness by the International Society for rock mechanics 
(ISRM., 1978). Because this approach relies on visual 
comparisons to estimate JRC values, the results may be 
subjective due to human bias (Wakabayashi and 
Fukushige., 1995; Hsiung et al., 1993). Among the 
significant advances, it is now possible to quantify the 
roughness of a joint rather precisely using laser 
profilometers or digital measuring devices. 
     The analysis of the collected data can then be 
conducted with different methods:  statistical approaches 

(Wu and Ali., 1978);(Tse and Cruden., 1979);(Krahn and 
Morgenstern., 1979);(Dight and Chiu., 1981);(Maerz et al., 
1990);(Reeves., 1985) have been used to quantify the 
roughness of rock joints using linear profiles. Recently 
researchers (Grasselli et al., 2002);(Lanaro., 2000);(Stout 
and Blunt., 2000) are using statistical parameters for 
quantifying 3-D rock profiles. Fractal approaches  ((Lee et 
al., 1990) (Turk et al., 1987);(Carr and Wardner., 1987) 
have applied the concept of fractal dimension to rock joints. 
     Roughness characterization requires field 
measurements, with or without contact, which are often 
time-consuming and expensive to carry out, especially for 
measuring the roughness of a very large area. Numerous 
in situ technologies provide precise measurement at a 
variety of spatial scales. However, roughness 
measurement in inaccessible/partially exposed areas has 
not been studied yet. A major issue arises as how to 
accurately characterize the roughness of a subsurface 
discontinuity. A method is needed to reconstruct 
underneath discontinuity roughness from limited samples 
obtained from boreholes, or exposed surfaces.  
     (Gravel et al., 2015) initiated a project to find 
alternatives to large-scale direct shear tests conducted in 
the field. The objective was to transfer in-situ shear tests to 
the laboratory. A 50cm-by-50cm schist outcrop was 
scanned using a laser scanner profilometer, and a point 



 

cloud of 3D coordinates defining the surface was acquired. 
These data served as a reference for this paper. We 
attempted to reconstruct the original surface from sparse 
topographic data using geostatistical techniques. The 
proposed method aims at characterizing the surface 
roughness while simultaneously resolving the issue of 
scale dependency. 
 
 
2 METHODOLOGY 
 
     The initial stage in geostatistical analysis is to determine 
the spatial structure of each variable (in this case, the 
height of the surface points). The variogram was used to 
describe the continuity and variability of fracture surfaces 
between every data point. The variogram γ (h) is defined 
as follows (Matheron.,1963): 
 
 

𝛾(ℎ) =
1

2𝑛(ℎ)
∑ [𝑧(𝑥𝑖 + ℎ) − 𝑧(
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Where, z(xi) = measurement taken at a location xi (in this 
case, z is the elevation of the surface point). 
z(xi + h) = measurement taken at a location h distance 
away. 
n(h) = number of data pairs h units apart in the direction of 
the vector. 
h = lag distance. 
γ(h) = variogram value. 
     The majority of variograms are defined by three 
parameters: the nugget effect, the sill, and the range.  
-Nugget effect:  is the micro-scale variation or 
measurement error.  
-Sill: is the variance in the data. 
-Range: is the distance (if any) at which data are no longer 
autocorrelated. 
     The experimental variogram cannot be used directly in 
structural analysis; it must be adjusted to a fitted function 
named the theoretical variogram. According to the 
literature, the spherical, exponential, and Gaussian models 
are three of the most often utilized variogram models. 
These models were fitted to the experimental variograms 
using the weighted least square method, which has been 
proven to be the most effective and accurate way of fitting 
variogram models so far (Cressie., 1985). This approach 
reduces the weighted sum of squared residuals (RSS) of 
the experimental variogram data by optimizing many 
parameters, including the nugget effect, the sill, and the 
range of the experimental data. The theoretical variogram 
was selected based on the model with the lowest RSS 
value. 
     Geostatistical methods based on variograms are 
referred to as kriging. Kriging is an interpolation technique 
that generates the best linear unbiased estimate at each 
location using the spatial variability obtained from the 
variogram model (Cressie., 1990). 
     (Kumar and Remadevi., 2001) provided a 
comprehensive overview of the numerous uses of kriging 

in various fields, such as in the field of geotechnics 
(Burgess and Webster., 1980);(Vieira et al., 
1981);(Berndtsson and Chen., 1994); in groundwater 
levels (Goovaerts., 2000); (Creutin and Obled., 1982); 
(Germann and Joss., 2001); in hydrology (Aboufirassi and 
Mariño., 1983); (Virdee and Kottegoda., 1984);(Kumar., 
1996) and in atmospheric science (Bilonick., 
1988);(Casado et al., 1994). 
 Kriging offers a wide and flexible variety of tools that 
provide estimates for un-sampled locations using the 
weighted average of neighboring field values (Isaaks and 
Srivastava., 1989). 
     A cross-validation technique was applied to verify the 
effectiveness of the prediction analysis approach,. One of 
the measured points was removed from the real data set in 
each iteration. Kriging analysis was done on the newly 
obtained data set and contour maps. The estimated values 
were compared to the true sample values that had been 
excluded from the sample data set at the start. A graphical 
plot was created to compare the actual and estimated 
values, , and error was determined as the root mean 
square of the differences between the estimated and true 
elevation values. The model is adjusted by the user based 
on these results, and then a second cross-validation is 
done, and so on.  
     Following this procedure for each predicted surface, 
surfaces were reconstructed by systematically dispersing 
(10cm by 10cm) samples, as shown in Figure 1. The 
roughness of the reconstructed surfaces is evaluated by (1) 
making a visual comparison to the original surface,(2) 
calculating Z2 for both x and y directions, and (3) analyzing 
the asperity's height distribution maps and frequency 
distribution histograms, as well as descriptive statistics, all 
of which are shown in Figures 2 to 5. 
 
 
3 RESULTS AND DISCUSSION 
 
     The five surface roughness maps obtained by universal 
kriging interpolation are displayed in Figure 3. As expected, 
as the number of samples increases, the reconstructed 
surface tends to resemble the original surface.  
     The least accurate reconstructed surface is based on 
four samples with 24% coverage. However, the most 
accurate reconstructed surface is based on thirteen 
samples with 77% coverage. The surface based on a 
distribution of four windows has displayed the overall relief 
of the rock surface but not the macro-roughness of all 
surface, Then, as coverage increases, we capture more the 
macro-roughness, which is unsurprising given the high 
coverage.  
     We may assert that we obtained a surface quite 
comparable to the original fracture by using 9-sample 
distribution covering 54% of the whole surface. It is then 
confirmed by the height of statistical data. Figure 3 shows 
that the asperity height distributions are similar for the 9-
sample reconstructed surface and the original surface: 
means of 41.44 vs. 41.3 mm and standard deviation of 6.94 
mm vs. 7.19 mm. 



 

 
 
Figure 1. The distribution of 4, 5, 7, 9, 11, and 13 windows over each reconstructed surface. 

 
 
     Tables 1 and 2 list the results of the descriptive statistics 
of Z2 values for x and y directions, which are also  shown 
in the box plot in figures 4 and 5. Figure 4 shows that the 
average Z2 value in the X direction obtained by 4-sample 
and 13-sample reconstructed surface is 0.40 and 0.49, 
respectively,(an improvement of 18%). Figure 5 indicates 
that these values are 0.45 and 0.68  in the Y direction (an 
improvement of 34%). 
     This study suggests that it is possible to capture the 
roughness of an inaccessible surface by reconstructing its 
topographic surface using limited and dispersed samples. 
Still, this method's potential is limited by the coverage 

percentage, which depends on the number of samples and 
geometries. We should also point out that, since the 
weights of the kriging interpolator are dependent on the 
variogram model, kriging is very sensitive to variations in 
the variogram model's specification. Furthermore, suppose 
the number of sampled observations is small, and the data 
is restricted in geographical scope, or the data are not 
sufficiently spatially correlated. In that case, it is hard to 
construct a sample variogram, so, kriging may not be the 
ideal method for making predictions. 
Finally, we suggest test this approach in an area with 
complex topography where the spatial autocorrelation of 
the variable of interest is only visible at a small scale.
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Figure 2. 3D Surface topography of the reconstructed and original rock fractures. 
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 (f) Original surface  

Figure 3. Height distribution of the asperities for each reconstructed surface 
 
 



 

 
 
Table 1. Summary of the statistical results Z2 (X direction) 
 

 
 
Table 2. Summary of the statistical results Z2 (Y direction) 
 

 
 
 

 
Figure 4. Box plot of Z2 values (X direction) 

 

Figure 5. Box plot of Z2 values (Y direction) 
 
 
4 CONCLUSIONS 
 
     When in situ rock joints are not accessible or fully 
exposed, it is often difficult to estimate roughness 
characteristics of full-scale rock joints. The geostatistical 
method can solve this problem by using the kriging 
interpolation technique to predict values at unsampled 
locations to obtain a reconstructed rock joint surface. 
     Kriging analysis was performed using spatial variability 
models, which provided reconstructed surfaces. The 
predictions were validated using the cross-validation 
technique. It was demonstrated that geostatistics could 
work effectively with 9 samples presenting 54% of the 
coverage of the whole surface. However, a sensitivity 
analysis to sample locations and sizes is currently 
performed to validate this technique and better understand 
its limits. 
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