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ABSTRACT 
The modern Peace River Valley in British Columbia contains an abundance of landslides with volumes ranging from tens 
of cubic metres to more than 10 million cubic metres. Landslide types in this region range from shallow slides in overburden 
to deep seated slides in clay shale bedrock, and often involve multi-level, complex landslide mechanisms. A landslide 
inventory for this region was updated by BGC in 2021 and 2022 to assign qualitative landslide behaviour types to each 
landslide, which reflect the dominant mode of landslide movement, long-term mean annual displacement rates, and the 
estimated relative frequency of faster movements. Airborne lidar change detection between 2006, 2015, 2019, and 2021 
and satellite InSAR data from 2020 and 2021, coupled with select field observations, were used to estimate the velocity of 
landslides over each incremental date range. The velocity distributions were compared to the long-term average probability 
distributions (limiting state vectors) proposed for each behaviour type, which have been used to define transition matrices 
for Markov chain modelling of landslide velocities.  
 
RÉSUMÉ 
La vallée moderne de la rivière de la Paix en Colombie-Britannique contient une abondance de glissements de terrain 
avec des volumes allant de dizaines de mètres cubes à plus de 10 millions de mètres cubes. Les types de glissements de 
terrain dans cette région vont des glissements peu profonds dans les morts-terrains aux glissements profonds dans le 
substrat rocheux de schiste argileux, et impliquent souvent des mécanismes de glissement de terrain complexes à 
plusieurs niveaux. Un inventaire des glissements de terrain pour cette région a été mis à jour par BGC en 2021 et 2022 
pour attribuer des types de comportement de glissement de terrain qualitatifs à chaque glissement de terrain, qui reflètent 
le mode dominant de mouvement des glissements de terrain, les taux de déplacement annuels moyens à long terme et la 
fréquence relative estimée des mouvements plus rapides. Les données de détection de changement de lidar aéroporté 
entre 2006, 2015, 2019 et 2021 ont été utilisées pour estimer la vitesse des glissements de terrain sur chaque plage de 
dates incrémentielle. Les distributions de vitesse ont été comparées aux modèles conceptuels de chaîne de Markov qui 
ont été développés pour modéliser la vitesse des glissements de terrain.  
 
 
 
1 INTRODUCTION 
 
The modern Peace River Valley in British Columbia 
contains an abundance of landslides with volumes ranging 
from tens of cubic metres to more than 10 million cubic 
metres. These landslides range from shallow slides in 
overburden to deep seated slides in clay shale bedrock, 
and often involve multi-level, complex landslide 
mechanisms. Numerous landslide investigations took 
place in the region in the 1970’s, 1980’s, and early 2000’s 
forming the basis for a landslide inventory of the Site C 
Reservoir, which is expected to be created in 2023. This 
inventory was updated by BGC in 2010 and 2011 to 
provide interpreted mechanisms of movement for each 
landslide in the inventory. This analysis was primarily 
based on air photos, a single vintage of airborne lidar data, 
and field investigations, and now includes over 2000 
mapped landslide complexes. In 2021 and 2022, we 
assigned qualitative landslide behaviour types to each 
landslide, which reflects the dominant mode of landslide 
movement, long-term mean annual displacement rates, 
and the estimated relative frequency of faster movements. 
Airborne lidar change detection between 2006, 2015, 2019, 
and 2021 have being used to estimate the velocity of 

landslides over each incremental date range, and how 
those velocities have changed over time. The database of 
landslides, landslide types, and velocities is being used to 
support the calibration of landslide velocity probability 
models and the development of precipitation and soil 
moisture thresholds for changes in landslide movement 
rates. 
 
 
2 BACKGROUND 
 
2.1 Landslide Types and Mechanisms 
 
The geology in this area of the Peace River valley is 
predominantly Cretaceous sedimentary rocks (siltstone, 
silty shale, and sandstone) overlain by a Quaternary 
sequence of fluvial, glacial, and interglacial deposits, 
cumulatively up to 400 m thick. Post-glacial downcutting of 
the modern Peace River has formed steep slopes in these 
deposits, which are prone to landsliding. The most 
common expected movement types in the study area are 
shallow, slope parallel colluvial debris slides, rotational 
earth slides, and translational bedrock and earth 
landslides.  



 

Many of these landslides are complex in nature, 
occurring along weak, near-horizontal clay layers in either 
the bedrock or glaciolacustrine deposits. Slides in bedrock 
are typically controlled by weak, pre-sheared bedding 
planes, sometimes bounded by relaxation joints formed 
during valley rebound. Slides in overburden can occur as 
compound soil slides (characterized by progressive 
movement over time) flow slides, or earth flows. In this 
case, we differentiate flow slides and earth flows by 
classifying flow-like behaviour of overburden material as a 
flow side, and secondary transport of either overburden or 
bedrock-derived colluvium as an earth flow. Example 
photographs of different landslide types within the study 
area are presented in Figure 1.  
 
2.2 Landslide Inventory Development 
 
In 2004, a regional landslide inventory was developed 
using air photos and ground-based observations (Severin, 
2004). The original inventory consisted of just under 2000 
mapped landslide complexes, some comprised of multiple 
smaller landslides with different potential failure 
mechanisms. In 2010 and 2011, BGC updated and 
expanded the original inventory, making use of airborne 
lidar data, collected in 2006, supplemented by 1:20,000 
and 1:40,000 scale air photos and field mapping. The 2006 
airborne lidar data had a bare-earth resolution of less than 
1 point per square metre. The inventory refinement was 
conducted using the methods described in Morgan et al. 
(2011).  

The landslides in the inventory have been mapped 
using a two-tiered approach: 1) landslide complexes, and 
2) individual landslides within each complex. Attributes 
included for each individual landslide are the landslide 
failure mechanism, estimated basal sliding surface 
elevations and material types, size of each landslide 
(length, width, depth, and estimated volume), as well as the 
activity state of each sub-landslide, which was simply 
classified as > 100 or < 100 years old.  
 
2.3 Landslide Velocity Models 
 
Identifying the presence of landslides and their expected 
volume and failure mechanisms can provide useful 
information to assess the risk posed by a failure of one of 
these slides, however it can often be difficult to understand 

and predict when a change in landslide velocity may occur, 
specifically when a slow-moving landslide may transition to 
a more rapid, mobile slide. Increased landslide velocity can 
often be attributed to a greater level of risk, as these faster 
and more mobile slides can lead to greater spatial 
probability of impact, shorter time for avoidance (increased 
temporal probability), increased vulnerability, and greater 
economic impacts (Porter et al., 2021).  

A change in the velocity of a landslide can be triggered 
by several factors, both natural and anthropogenic. 
Complex relationships are often present, which makes 
correlating these factors to landslide velocity difficult. 
Recent work by Porter et al., (2021, 2022) has proposed 
the use of Markov chains (Howard, 2007) for assigning 
probabilities to landslide velocity transitions within pre-
existing slow-moving landslides. In a Markov chain model, 
the condition of a physical system (i.e., the landslide) can 
be described by state variables (e.g., the landslide velocity, 
or annual displacement rate). The key assumption in a 
Markov model is that the current state (and only the current 
state) can be used to determine the probability distribution 
of all possible condition states some number of time steps 
into the future. In other words, a Markov model of landslide 
velocity assumes that the current velocity class can be 
used to determine the probability distribution of the 
landslide moving at all possible velocity classes some 
number of years into the future.  This probability distribution 
eventually converges to some long-term average 
distribution, referred to as the limiting state vector. 

For the purpose of modelling landslide velocity 
probability distributions, the landslide velocity condition 
states have been related to the Cruden and Varnes (1996) 
landslide velocity classification (Table 1). In the original 
classification, the Very Slow velocity class corresponds to 
landslides with a velocity ranging from 16 mm/year to 
1.6 m/year. Consistent with Porter (2021), we subdivided 
the Very Slow velocity class into Class 2a (> 16 mm/year) 
and 2b (>160 mm/year) to facilitate better characterization 
of the range of potential impacts from slides moving within 
this velocity range. The landslide velocity classes in 
Table 1 have been defined in terms of total annual 
landslide displacement criteria listed in the fourth column 
of the table. Further details about the proposed modified 
landslide velocity classification can be found in Porter et al. 
(2022). 

 
 

 
Figure 1. Landslide types within the Peace River Valley a) rock slide, b) compound earth slide and c) earth flow



 

Table 1. Modified landslide velocity classification after 
Cruden and Varnes (1996) 
Clas

s 
Descriptio
n 

Typical 
velocity 

Proposed 
annual 
displacement 
criteria (m) 

Proposed 
mean annual 
displacement 
(m) 

7 Extremely 
rapid 

>5 m/sec   

6 Very rapid >3 m/min   
5 Rapid >1.8 m/hr   

4+ Moderate >13 m/month >16 64 
3 Slow >1.6 m/yr >1.6 6.4 
2b Very slow >160 mm/yr >0.16 0.64 
2a Very slow >16 mm/yr >0.016  0.064  
1 Extremely 

slow 
<16 mm/yr >0.0016  0.005  

0 Dormant 0 mm/yr <0.0016  0  
Note: Class 4+ refers to all velocity classes Moderate or greater 
 

Using a Markov chain approach, the probability of a 
landslide transitioning to a different velocity class or 
remaining in its current class is defined by a transition 
matrix. It is expected that different landslide types will have 
a different set of transition probabilities and therefore a 
different transition matrix. For slow-moving landslides in 
our study area, five different landslide behaviour types are 
considered, summarized in Table 2. These landslide 
behaviour types are intended to reflect long-term average 
annual displacement rates and how often more rapid 
movements likely occurred in the past on these slopes.  

A key step in defining the transition matrices for each 
landslide behaviour type by Porter et al. (2022) was to 
assign a limiting state vector (i.e., probability distribution) 
that describes the long-term average distribution of 
landslide velocity classes for each behaviour type. These 
assignments were made by Porter et al. (2022) using their 
collective experience and judgment. Each limiting state 
vector can be combined with the mean annual 
displacement associated with each landslide velocity class 
to estimate the long-term average annual landslide 
displacement. The limiting state vector values are shown in 
the bottom rows of Table 2. The Site C landslide velocity 
database provides an opportunity to validate the assumed 
limiting state vectors assigned to the landslide behaviour 
types that are most commonly encountered in the 
inventory.  
 
 
3 METHODOLOGY 
 
3.1 Landslide Inventory Update 
 
The first step in our work was to update the landslide 
inventory based on newer, high-resolution lidar data and 
lidar change detection results. Airborne lidar scanning data 
from 2006, 2015, 2019, and 2021 were used to perform 
lidar change detection across the entire study area. 
Change detection was performed using Iterative Closest 
Point (ICP) alignment techniques and 3D point-based 
change calculation techniques, to maximize the ability to 
detect slow moving landslides (van Veen et al, 2017). Any 
areas where ground movement was identified in the 
change detection results that were not previously included 

in the landslide inventory were added to the database. This 
resulted in the addition of approximately 50 landslide 
complexes to the inventory. The results were also used to  
modify the original landslide polygon boundaries. High-
resolution lidar collected in 2019 and 2021 (3 to 5 points 
per square metre for bare-earth data) facilitated the 
refinement of the landslide characteristics for these new 
sites, as well as at existing sites where the landslides were 
mapped using the relatively lower resolution data from 
2006 (< 1 point per square metre bare-earth data). Each 
landslide was assigned one of the characteristic behaviour 
types listed in Table 2 (Type A to Type E), based on 
morphological assessment of the lidar topography and the 
lidar change detection results.  
 
3.2 Landslide Velocity Compilation 
 
Landslide velocity data was compiled for a selected subset 
of just over 600 entries in the landslide inventory. Landslide 
velocities were assigned to each landslide based on the 
three periods of airborne lidar change detection: 2006 to 
2015 (9 years), 2015 to 2019 (4 years), and 2019 to 2021 
(2 years).   

The airborne lidar change detection results were used 
to assign an average annual velocity to each landslide for 
the three different time periods. Satellite-based InSAR data 
(ALOS-2) acquired over the snow free months between 
spring 2020 and fall 2020 were used to refine the velocity 
estimates for the 2019 to 2021 period, particularly to 
distinguish between Velocity Class 1 and Class 2a. This 
analysis was completed using custom-built web-based GIS 
tools which allowed us to dynamically visualize the lidar 
change detection and InSAR monitoring results and cut 
slope profiles through the lidar change detection results to 
correlate areas of ground movement to the mapped 
landslide basal surfaces. 

A detailed comparison between airborne lidar change 
detection and satellite InSAR capabilities for measuring 
slope displacement is summarized in van Veen et al. 
(2022). Typically, airborne lidar change detection can 
measure topographic changes on the order of 10’s of cm 
between data acquisitions, or 8 to 10 cm between data 
acquisitions in the case of newer, high-resolution data. 
ALOS-2 InSAR is capable of measuring line of sight 
displacement on the order of several mm per year to 100’s 
of mm per year, however inspection of the data for this 
project suggests that measurements less than 10 to 15 
mm/year cannot be confidently differentiated from noise. 
Where no clear displacement trend could be determined 
from the lidar change detection or InSAR, a velocity class 
of 1 was assumed, so as to not overestimate the number 
of dormant or inactive slides in the inventory. Given the 
higher quality of the 2019 and 2021 airborne lidar data 
relative to the 2016 and 2015 data, and the ability to cross 
reference the InSAR monitoring results to the change 
detection, interpretation of the data for the 2019 to 2021 
period is likely subject to fewer limitations. 
 
 
 



 

Table 2.  Proposed landslide behaviour types and characteristics for pre-existing slow-moving landslides (Porter et al., 
2022) 

Behaviour Type Type A Type B Type C Type D Type E 

Typical geology Relatively 
intact shales, 
mudstones 

Relatively intact 
shales, 
mudstones, 
residual soils, 
overconsolidated 
glacial deposits 

Relatively intact glacial 
deposits, colluvium 
derived from shales, 
mudstones, residual 
soil and glacial 
deposits   

Colluvium 
derived from 
shales, 
mudstones, 
residual soil and 
glacial deposits   

Colluvium 
derived from 
shales, 
mudstones, 
residual soil and 
glacial deposits   

Typical failure mechanism Translational 
block slides 
and spreads 

Translational 
block slides and 
spreads 

Translational block 
slides and spreads, 
rotational slides, 
complex earth slides-
earth flows 

Translational 
slides, rotational 
slides, earth 
flows, complex 
earth slides-
earth flows 

Translational 
slides, rotational 
slides, earth 
flows, complex 
earth slides-
earth flows 

Typical inclination of basal 
shear surface 

Sub-horizontal 
(0 to 5 
degrees) 

Sub-horizontal 
(0 to 5 degrees) 

Similar to the residual 
friction angle 

Similar to the 
residual friction 
angle 

Sub-parallel to 
the ground 
surface 

Typical toe condition No toe 
erosion 

Toe erosion 
usually absent 

Toe erosion may be 
active 

Toe erosion 
often active 

Toe erosion 
almost always 
active 

Long-term annual 
probability of Class 4+ 
velocities 

1 in 20,000  1 in 6,500 1 in 2,000 1 in 650 1 in 200 

Assumed limiting state velocity class distribution; (assumed average annual displacement for each velocity class in brackets) 

0    (0 m) 70% 50% 30% 10% 0.5% 
1    (0.005 m) 28.5% 45.5% 55.0% 44.9% 3.0% 
2a  (0.064 m) 1.1% 3.2% 10.8% 32.4% 54% 
2b  (0.64 m) 0.4% 1.1% 3.6% 10.8% 36% 
3    (6.4 m) 0.06% 0.18% 0.60% 1.8% 6.0% 
4+  (64 m) 0.005% 0.015% 0.050% 0.15% 0.50% 
Mean annual displacement  0.01 m 

 
0.03 m 
 

0.1 m 0.3 m 1.0 m 

 
 
 
3.3 Velocity Transition Model Validation 
 
Summary statistics for the compiled landslide types and 
velocities were generated and compared to the conceptual 
velocity models presented in Porter et al. (2022), for failure 
types that had a sufficient number of mapped landslides. 
 
 
4 RESULTS 
 
The resulting distribution of landslide types is summarized 
in Table 3. The distribution of landslide velocities for each 
of three time periods is presented in Figure 2. A general 
trend of increasing velocities over time is present, with 
fewer slides mapped as Class 0 or 1, and more slides 
mapped as class 2b and 3+ in the later time periods. An 
example is presented in Figure 3, where the lidar change 
detection results for each of the three time periods are 
shown for a Type C slide. In this example, the Velocity 
Class changes from Class 2a to Class 3 and then from 
Class 3 to Class 4 over the three comparison periods. 
 
 

Table 3. Summary of mapped landslide types. 
Type Number of Slides Percentage of Slides 

A 6 1% 
B 55 9% 
C 373 61% 
D 175 29% 
E 2 < 1% 

Total 611  
 
 

 
Figure 2. Distribution of velocity classes for each lidar 
change detection time period. 
 
 



 

 

Figure 3. Airborne lidar change detection results for a Type C slide during three different time periods a) 2006 to 2015, 
Class 2a,  
 
 

 
Figure 4. Comparison of velocity class distributions for a) 
Type C and b) Type D landslides. 
 

 
The majority of mapped landslides (89%) were 

classified as Type C or Type D.  
The velocity distributions for Type C and D slides are 

presented in Figure 4. These distributions are presented as 
a percentage of mapped slides in each type for direct 
comparison. A comparison to the assumed limiting state 
velocity distributions for each of these classes, presented 
in Porter et al. (2022), are provided in Table 4 and Table 5. 
For Type C slides, the measured landslide velocities are 
within 5% of the limiting state assumptions for Class 0 and 
1, show a smaller percentage of slides in Class 2a and a 
larger percentage of slides in Class 2b, and the percentage 
of slides Class 3 or above is comparable to the conceptual 
model. For Type D slides, the percentage of slides 
measured to be in Velocity Class 0 and 1 or Class 2a are 
less than the limiting state assumptions, with the 
percentage of slides mapped as Class 2b 10 to 20% 
greater than the model, and the percentage of slides Class 
3 or above comparable to the conceptual model. 
 
 
Table 4. Percentage of Type C landslides in each velocity 
class compared to limiting state assumptions. 

Velocity 
Class 

2006 to 
2015 

2015 to 
2019 

2019 to 
2021 

Assumed 
Limiting State 

0 or 1 90% 90% 79% 85.0% 
2a 3% 1% 2% 10.8% 
2b 7% 8% 16% 3.6% 
3+ 0% < 1% 2% < 1% 

 



 

Table 5. Percentage of Type D landslides in each velocity 
class compared to limiting state assumptions. 

Velocity 
Class 

2006 to 
2015 

2015 to 
2019 

2019 to 
2021 

Assumed 
Limiting State 

0 or 1 85% 83% 70% 95.5% 
2a 3% 1% 4% 3.2% 
2b 11% 13% 24% 1.1% 
3+ 1% 2% 1% < 1% 

 
 
5 DISCUSSION 
 
Given that the limiting state velocity class probability 
distributions assigned by Porter et al. (2022) were based 
on judgment, it was anticipated that there would be an 
imperfect match with observations from the Site C landslide 
inventory. In many respects, the inventory observations 
support the judgment of Porter et al. (2022), but there are 
some important and unexpected differences.  In particular, 
a relatively small proportion of slides were classified as 
Velocity Class 2a, and a larger proportion of slides were 
classified as Velocity Class 2b. Three possible reasons for 
this discrepancy are:  

 Possible annual variations in landslide velocity 
classes occurring between periods of lidar 
acquisition;  

 Limitations of the monitoring methods used to 
extract the velocity information; and  

 Climatic conditions during the monitoring period 
being different than long-term average conditions. 

The inability to extract more subtle temporal trends 
during the long period between airborne lidar scans (i.e., if 
a slope was moving at Class 1 or 2a for several years, but 
that movement is overprinted by a larger scale movement 
that occurred in one of the years between lidar scans).  

While lidar change detection with high-quality data is 
capable of identifying movements greater than Velocity 
Class 1, it may be difficult to detect Velocity Class 2a 
movements unless there is a long period of time between 
lidar scans, allowing small movements to accumulate to a 
level that is above the limit of detectable change. Given that 
lidar change detection is measuring changes in the 
topographic surface, when the failure surface of a landslide 
is sub-parallel to the slope it is possible that the landslide 
can move relatively large distances, without producing 
detectable topographic change.  

Without high-frequency data, it can be difficult to 
capture short to medium term temporal trends such as 
short-duration velocity surges. When the lidar change 
detection is supplemented by other monitoring tools, more 
detailed temporal patterns can be understood. As an 
example, an area with several mapped landslides on an 
outside river bend is presented in Figure 5. The lidar 
change detection results between 2019 and 2021 (Figure 
5a) suggest widespread movement over this area, on the 
order of 2 to 3 metres over two years (upper end of Velocity 
Class 2b). Inspection of ALOS-2 satellite InSAR 
displacement results (Figure 5b) from the same time period 
suggest that velocities in 2020 were two to three times 
higher than they were in 2021 (i.e., moving at Velocity 
Class 2b for a year and then slowing to Velocity Class 1 or 

2a, Figure 5c). In Spring 2022, a significant retrogression 
event on one of these slides occurred, with estimated 
displacement on the order of several hundred metres 
(Figure 5d). The timing of this event was constrained to a 
three-day period using freely available satellite imagery, 
which suggests movement within Velocity Class 5 or 
Velocity Class 6, that may have been averaged to a lower 
velocity class using lidar data collected several years apart, 
in the absence of other information.   

Distinguishing between Velocity Class  0 and 1 without 
in-situ instrumentation is very much impractical, and for 
that reason, some assumptions must be made about when 
to consider a slide active or inactive based only on remote 
sensing monitoring.  The proposed limiting state probability 
distributions for each landslide behaviour type provide a 
means of systematically assigning probabilities of Velocity 
Class 0 and 1 to these landslides in the absence of 
instrumentation data.   

It is likely that the distribution of landslide velocities 
during any given time period will be influenced by long-term 
climate trends. Preliminary evidence suggests that there 
has been an increasing amount of precipitation in the 
Peace Region since approximately 2011, which may be 
contributing to the observed increase in faster-moving 
slides. Further work is underway to perform a detailed 
analysis of climate trends as they related to landslide 
displacement rates for slopes within the inventory. The 
availability of new tools to help characterize landslide 
failure mechanisms and velocity changes over time will 
help to improve our ability to predict future changes in 
velocity states. 

 
 

6 CONCLUSIONS 
 
Normally slow-moving landslides pose a risk to 
infrastructure, particularly during periods of faster 
movement.  Markov chain models have been proposed to 
help estimate landslide velocity probability distributions 
which can be leveraged in landslide hazard and risk 
assessments.  One of the key inputs to these proposed 
models is a limiting state probability distribution of landslide 
velocities for different landslide behaviour types.   

Ongoing compilation of landslide velocity statistics for a 
large database of landslides will help to improve 
assumptions around the limiting state velocity class 
probability distributions for different landslide behaviour 
types in northeastern BC. The growing landslide velocity 
timeseries data for the Site landslide database in 
northeastern British Columbia will support these initiatives.  
There are opportunities to compile landslide velocity 
timeseries data from a larger group of asset owners and 
operators in the region, including from road, rail, and 
pipeline operators.   

Future work will also examine correlation of changes in 
landslide velocity to precipitation and soil moisture trends.  
This will improve our ability to forecast near-term surges in 
landslide velocity, as well as to better anticipate changes in 
landslide hazard and risk associated with decadal-scale 
precipitation patterns and projected climate change.  
 



 

Figure 5. Example of supplementing lidar change detection results with additional information for an active area including 
a) airborne lidar change detection results between 2019 and 2021, b) ALOS-2 InSAR line of sight velocity measurements 
between 2020 and 2021, c) time-series displacements derived from InSAR measurements and d) photograph of rapid 
slide that occurred in Spring 2022. 
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