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ABSTRACT 
Desiccation cracking is an important phenomenon in geotechnical and geoenvironmental engineering, which can affect 
the hydrological and mechanical properties of soils. Organic soils are notorious for having high water adsorption capacity, 
high compressibility, and low strength. In this project, desiccation cracking of a local organic soil from Alberta is first tested 
by measuring the desiccated area at different moisture contents. Afterward, an effort is made to improve desiccation 
cracking by reducing the desiccated area through a pulp and papermill fly ash-based geopolymer. The influence of such 
parameters as geopolymer content, alkaline activator/ fly ash, and sodium hydroxide/ sodium silicate ratios on desiccation 
cracking have been put to test. The results show that the employed geopolymer leads to a reduction in the soil matrix. 
However, the shrinkage in the soil and dish  boundary area is increased remarkably.  
 
RÉSUMÉ 
 
La fissuration de dessiccation est un phénomène important en génie géotechnique et géoenvironnemental, qui peut 
affecter les propriétés hydrologiques et mécaniques des sols. Les sols organiques sont connus pour avoir une capacité 
d'adsorption d'eau élevée, une compressibilité élevée et une faible résistance. Dans ce projet, la fissuration par 
dessiccation d'un sol organique local de l'Alberta est d'abord testée en mesurant la zone desséchée à différentes teneurs 
en humidité. Par la suite, un effort est fait pour améliorer la fissuration par dessiccation en réduisant la zone desséchée 
grâce à un géopolymère à base de cendres volantes d'usine de pâtes et papiers. L'influence de paramètres tels que la 
teneur en géopolymères, l'activateur alcalin/cendres volantes et les rapports hydroxyde de sodium/silicate de sodium sur 
la fissuration par dessiccation a été testée. Les résultats montrent que le géopolymère utilisé conduit à une réduction de 
la matrice du sol. Cependant, le rétrécissement dans la zone limite du sol et de la boîte est remarquablement augmenté. 
 
 
 
1 INTRODUCTION 
 
Desiccation cracking takes place naturally in all soils with 
a significant cohesive particle content. This phenomenon 
can deleteriously affect the mechanical and hydraulic 
characteristic of the soil. Desiccation cracking also has 
negative agricultural impacts such as plant water and 
nutrient stress (Baer et al. 2009), and has such geological 
impacts as increased sediment entrainment (Tang et al. 
2021). Therefore, its measurement is important for soils 
behavior prediction (Xu et al. 2022)  As an organic soil, 
muskeg is known for extremely high compressibility, low 
strength, and high moisture content (ElMouchi et al. 2021, 
2022). 
     Soil improvement is an important technique to enable 
construction in regions with poor soil properties 
(Abbaspour et al. 2020, Habibi et al. 2021, Narani et al. 
2021, 2022, Reza Tabakouei et al. 2022). Efforts have 
been made in the literature to mitigate soil desiccation by 
different means. For instance, (Narani et al. 2020) 
investigated the desiccation cracking of highly plastic and 
expansive bentonite and its remediation by using waste tire 
textile fibers. (Tang et al. 2012) proposed desiccation 
cracking improvement by polypropylene fiber inclusion. 
Other desiccation cracking mitigation methods include 
using biochar and biomass (Yang et al. 2020, Zhang et al. 
2020, Mei et al. 2021), enzymes (Xie et al. 2020), 
sugarcane pith (Abd El-Halim 2017), guar gum biopolymer 
(Acharya et al. 2019), compost (Intharasombat et al. 2007), 

polyester fibers (Chaduvula et al. 2017), microbially 
induced calcite precipitation (MCIP) (Liu et al. 2020), and 
silica fume (Kalkan 2009). 
     Alkali activated aluminosilicate precursors, also known 
as geopolymers, are a new stream of green and 
sustainable binders that are proposed as a decent 
alternative to ordinary Portland cement (OPC). Different 
characteristics of geopolymer-improved soils such as 
compaction, unconfined compressive strength, volume 
change, compressibility, X-ray diffraction (XRD), energy 
dispersive X-ray spectroscopy (EDX), and scanning 
electron microscopy (SEM) have been studied in previous 
publications (Zhang et al. 2013, Pourabbas Bilondi et al. 
2018, Yaghoubi et al. 2020, Wang et al. 2021).  Although 
the improving effect of geopolymer on desiccation cracking 
has been alluded to in the literature (Khaksar Najafi et al. 
2020, 2021, Samuel et al. 2020), there is no 
comprehensive study on this subject. 
     In this paper, this gap has been filled by evaluating the 
influence of fly ash-based geopolymer on the desiccation 
cracking behavior of an organic muskeg soil procured from 
Alberta, Canada. The fly ash employed in this paper is 
produced as a byproduct of pulp and paper mill industry 
and has shown potential for consumption in construction 
projects (Cherian and Siddiqua 2021, Naeini et al. 2021, 
Pokharel and Siddiqua 2021a). The influence of such 
parameters as geopolymer content and sodium hydroxide/ 
sodium silicate ratio on the desiccation cracking behavior 
of the soil were studied.  



 

2 MATERIALS AND METHODOLOGY 
 
The organic soil chosen in this study is a muskeg soil 
obtained from Wabasca region, Alberta, Canada. Basic in 
situ tests are reported elsewhere (Liu et al. 2018). The 
muskeg has extremely high intrinsic water content 
(260±26%), and the organic part makes up to 26±2.1% of 
the soil. The rudimentary geotechnical characteristics of 
the muskeg are determined in a previous publication 
(Pokharel and Siddiqua 2021b) and displayed in Table 1. 
Based on (Pokharel and Siddiqua 2021a), the muskeg soil 
consists of 41.01% O, 34.094% C, 10.42% Si, 2.99% Ca, 
2.73% Fe, 1.90% Al, 1.33% S, 0.57% K, and 3.91% other 
elements. 
     Pulp and paper mill fly ash (PFA) was received from a 
local company (Domtar, Kamloops, BC, CA). As per the 
gradation, fly ash consists of 80% particles finer than 0.075 
mm, 63% between 0.002 and 0.075 mm, and 17% finer 
than 0.002 mm. According to XRF tests, PFA consisted of 
19.69% CaO, 5.3% SiO2, and 1.57% Al2O3 (Cherian and 
Siddiqua 2021, Naeini et al. 2021). Pulp and paper mill PFA 
has shown potential for being used as a replacement for 
coal fly ash and cement (Cherian and Siddiqua 2019, 
Pokharel and Siddiqua 2021a). 
     Sodium hydroxide (NaOH) and Sodium Silicate 
(Na2SiO3) were provided by Fisher Scientific. 12 M solution 
sodium hydroxide solution was obtained by dissolving the 
pellets in distilled water. 
 
Table 1. Basic geotechnical characteristics of  
the muskeg soil 
 

Parameter Value 

Liquid limit (%) 106 

Plastic limit (%) 84 

Plasticity index 22 

pH 7.5 

Grain size distribution (%)  

> 0.075 mm 18 

0.002 – 0.075 mm 60 

< 0.002 mm 22 

 
 
2.1 Specimen preparation 
 
Specimens were prepared in round aluminum dishes with 

a diameter of 150 mm. About 127.4 g of super saturated 

muskeg (at its natural moisture content) was poured in the 
dishes to reach a depth of about 10 mm. In the case of 
geopolymer-stabilized soils, 10%, 20%, and 30% of the soil 
was replaced with geopolymer. In order to prepare the 
geopolymer, the intended alkaline activator composition 
(NaOH : Na2SiO3 = 1:0, 1:1, 1:2) was obtained by mixing 
sodium hydroxide and sodium silicate solutions. The 
solutions were then thoroughly mixed with the designated 
amount of fly ash (activator/PFA ratio of 0.8).  
     After thoroughly mixing the activator with the muskeg 
soil, samples were weighed and placed directly under a 
thermal lamp. The height was adjusted to set the 
temperature at the surface of the soil to 50°C. Samples 

were monitored for morphological variations and they were 
weighed and pictures were taken constantly. This process 
was continued until no further variation is specimen weight 
was recorded in one-hour intervals. Dishes were then 
placed inside an oven and dried for 24 hours at a 
temperature of 110°C. Subsequently, the dishes were 
weighed again and a picture was taken from the final crack 
distribution. 
     Desiccation cracking images were analyzed through 
ImageJ software. Images were first converted to grayscale 
and the contrast was adjusted. Afterwards, the images 
were converted into binary, where the cracks were 
illustrated in white color, whereas the soil was black. As 
observed in Figure 1, this process facilitated the cracked 
area calculation. Respective moisture content of each 
image was also calculated by using the weights recorded 
during the tests. In order to quantitatively discuss the effect 
of geopolymers on desiccation cracking, Crack Intensity 
Factor (CIF) was calculated by dividing the cracked area 
by the total area of the samples (Miller et al. 1998, Narani 
et al. 2020). 
 

   
Figure 1. Image processing method: RGB image (left), 
grayscale image (middle), and binary image (right) 
 
3 RESULTS AND DISCUSSION 
 
3.1 Quantitative measurements 
In order to quantitively assess desiccation cracking, Crack 
intensity factor (CIF) has been incorporated. For three 
different stabilized soils, the CIF values are calculated and 
presented in Figure 2 to Figure 4. For the geopolymer-
stabilized soils, three different ratios (1:0, 1:1, and 1:2) of 
two different activators, NaOH and Ni2SiO3, were added 
and the corresponding results are shown in Figure 2 to 
Figure 4. In all Figures, the results demonstrate that the 
addition of PFA and activators to the organic soil reduces 
the initial water content of the soil. Moreover, the more PFA 
added to the organic soil (from 10% to 30%) the lower 
water content in specimens has been obtained. Comparing 
the addition of Ni2SiO3 and NaOH to the PFA stabilized 
soils as presented in Figure 2 to 4 suggests that Ni2SiO3 

can lead to better improvement results in terms of crack 
area reduction. According to figure 2 to 4 the value of crack 
area changes in stabilized soils in comparison to organic 
soil can be calculated. Figure 2 shows that the final crack 
area for PFA10AA1:0, PFA10AA1:1 and PFA10AA1:2 has 
been increased 72.21%, 62.13% and 40.23% respectively, 
compared to the plain soil. Although the crack area in plain 
organic soil is lower than these samples, adding fly ash 
geopolymer and activators to organic soil leads to 
decreasing cracks in the middle of samples (soil matrix) 
and increases the shrinkage in the stabilized soil and dish 
boundary area, which can result in a uniform soil. As such, 
if one wishes to exclude the soil shrinkage at the dish-soil 



 

boundary, the cracked area is reduced remarkably, 
reaching to values near zero in the more heavily stabilized 
specimens. Likewise, in figure 3 the value of increasing 
cracks is 54.63%, 42.44%, and 28.28% for PFA20AA1:0, 
PFA20AA1:1 and PFA20AA1:2, respectively, compared to 
the plain muskeg soil. In figure 4, the value of crack area 
increase for PFA30AA1:0, PFA30AA1:1 are 18.41% and 
8.95% respectively, as compared to the plain organic soil. 
For PFA30AA1:2 crack area has been reduced by 8.95% 
comparing to the plain organic soil. Therefore, 
PFA30AA1:2 only sample that not only is the most uniform 
sample, but also has the least crack area among all 10 
specimens. 
  
3.2 Morphological observation  
Figure 5 to 8 represent the images of the soil mixtures used 
in the monitoring of the desiccation cracking process. For 
the case of unstabilized organic soil (see Figure 5), the 

monitored cracks are shown to be smooth, with clods 
randomly distributed over the area of the round dishes. In 
contrast, the results of Figure 6 to 8 indicate that by 
stabilizing the soil through PFA and activators addition, the 
cracks become jagged, and the shrinkage of the soil 
samples increases. It also shows that by increasing PFA 
from 10% to 30%, cracked area decreases. Although the 
organic soil shows less cracked areas in comparison to 
stabilized soils, the PFA stabilized soils become more 
compact and the crack in the middle of the samples has 
been decreased. The underlying reason higher cracked 
area in stabilized soils lies in the greater shrinkage of the 
material at the soil-dish boundary. This proves that 
geopolymer stabilization can make the soil matrix more 
uniform and the soil particles can adequately adhere to 
each other. In addition, in all figures substituting NaOH with 
Na2SiO3 leads to further reduction in the crack area. 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Crack intensity factor against water content for PFA10AA with various activator contents 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Crack intensity factor against water content for PFA20AA with various activator contents 
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Figure 4. Crack intensity factor against water content for PFA30AA with various activator contents 
 
 

 
Figure 5. Evaluation of desiccation cracking for P0 

 

 
 Figure 6. Evaluation of desiccation cracking for PFA10AA1:2 

 

 
 Figure 7. Evaluation of desiccation cracking for PFA20AA1:2 
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 Figure 8. Evaluation of desiccation cracking for PFA30AA1:2 
 
 

4 CONCLUSION 
In this paper, laboratory experiments were conducted to 
evaluate the feasibility of fly ash based geopolymer, 
sodium hydroxide and sodium silicate employment in 
desiccation cracking improvement in an organic muskeg 
soil from Alberta, Canada. Different contents of PFA 
(10%, 20% and 30%) and different ratios of activators 
(NaoH: Na2SiO3 = 1:0, 1:1, 1:2) were selected to add 
into the organic soil. Based on the experiments, it is 
proven that by adding PFA into the organic soil, samples 
become more compact and uniform with increasing 
shrinkage in soil and dish boundary area and reduction 
of cracks within the soil matrix. Moreover, by increasing 
the percentage of PFA from 10% to 30%, crack area 
decreases. In terms of activators, sodium silicate shows 
higher influence on reducing crack area in comparison 
to sodium hydroxide. According to these results, fly ash 
based geopolymers and activators can have a positive 
effect on having more solid samples while reusing an 
industrial by-product that is traditionally dumped in the 
landfills. 
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