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ABSTRACT 
Direct shear test is a commonly used method to determine the shear strength of geomaterials. The authors’ recent studies 
showed that the minimum required ratio of 10 between the specimen width (W) to the maximum particle size (dmax) of 
granular material stipulated by ASTM D3080/D3080M-11 is not large enough to eliminate the specimen size effect (SSE). 
Using this minimum required ratio can result in overestimation of the friction angle and leads to non-conservative structure 
design. The authors’ studies further showed that a minimum required ratio of 60 is appropriate to eliminate the SSE. This 
is however problematic for coarse granular materials like gravel, rockfill and waste rocks to prepare specimens having a 
W/dmax ratio of 60 even with large direct shear box of 30 cm. In this article, an equation is presented to describe the 
relationship between the normalized friction angle and W/dmax ratio. Direct shear tests and pile tests are performed to 
validate the proposed equation. By using this equation along with the friction angles obtained by direct shear tests on 
specimens having W/dmax ratios smaller than 60, the friction angles corresponding to the specimens having W/dmax ratio of 
60 can be obtained that are exempt from SSE.  
 
RÉSUMÉ 
La méthode de cisaillement direct est couramment utilisée pour déterminer la résistance au cisaillement des géomatériaux. 
Les études récentes menées par les auteurs ont montré que la valeur de 10 pour le ratio minimum requis entre la largeur 
d'une éprouvette (W) et la taille maximale des particules du matériau granulaire (dmax) stipulée par la norme 
D3080/D3080M-11 de l’ASTM n'est pas suffisamment grande pour éliminer l'effet de taille de l'éprouvette (ETE). 
L’utilisation de cette valeur minimale requise peut mener à une surestimation de l’angle de frottement et conduit à une 
conception de structures non conservatrice. Les études suggèrent qu’une valeur de 60 est nécessaire pour éliminer le 
ETE. Cette exigence est problématique pour les matériaux granulaires grossiers comme le gravier, le remblai rocheux et 
les roches stériles afin d’obtenir des éprouvettes ayant une valeur de 60 pour le ratio de W/dmax, même avec une grande 
boîte de cisaillement directe de 30 cm. Dans cet article, une équation a été présentée pour décrire la relation entre l’angle 
de frottement normalisé et le ratio de W/dmax. Des essais de cisaillement direct et des essais de pile sont effectués pour 
valider l'équation proposée. En utilisant cette équation, l’angle de frottement correspondant à une éprouvette ayant un 
ratio de 60 peut être obtenu à partir des angles de frottement obtenus par des essais de cisaillement direct sur des 
éprouvette ayant un ratio de de W/dmax plus petit que 60. 
 
 
1 INTRODUCTION 
 
Direct shear test is a popular and commonly used method 
to measure the shear strength parameters of geomaterials. 
Despite some limitations, it remains largely used due to its 
simplicity and cost effectiveness. It is also the prevalent 
method to determine the behavior of rock joints subjected 
to shear loading (Sow et al. 2016; Bahaaddini 2017; Zhang 
et al. 2019; Morad et al. 2020) or material interfaces 
(Choudhary and Krishna 2016; Punetha et al. 2017; Afzali-
Nejad et al. 2017, 2018; Xu et al. 2019). 

Direct shear test method imposes a sliding plane. This 
aspect represents an important drawback of the testing 
method. When the specimen size is too small, the influence 
of individual particles along the shear plane on the shear 
strength can be amplified and the test results can become 
non-representative of the shear strength in field conditions. 
The variation of shear strength with specimen size is 
known as specimen size effect (SSE) (Parsons 1936; 
Dadkhah et al. 2010; Mirzaeifar et al. 2013; Ziaie Moayed 
et al. 2017; Deiminiat et al. 2020; Zahran and Naggar 2020; 

MotahariTabari and Shooshpasha 2021; Deiminiat et al. 
2022).  

Until now, several norms (BS 1377, Eurocode 7, ASTM 
D3080) have been proposed and widely implemented to 
specify the specimen size and maximum particle size (dmax) 
of tested materials. ASTM requires a ratio of at least 10 
between the specimen width (W) and dmax. For granular 
material having a dmax value smaller than 1 mm, one can 
readily obtain specimens having W/dmax ratio equal to or 
larger than 60 with standard direct shear apparatus and a 
shear box of 60 mm. For coarse granular materials like 
gravel, rockfill and waste rocks, the minimum required ratio 
of 10 is almost always used by people because associated 
dmax values are very large. Special large direct shear 
apparatus must be employed to reach the minimum 
required W/dmax ratio of 10. However, a literature review 
given by Deiminiat et al. (2020) showed that this minimum 
required W/dmax ratio of 10 is arguably not large enough to 
systematically avoid SSE. This was further confirmed by an 
experimental study of Deiminiat et al. (2022).  



 

It should be noted that Deiminiat et al. (2020, 2022) are 
not the first ones who investigated the SSE of direct shear 
tests. Rather, several publications on this aspect have 
been reported over the years (e.g., Parsons 1936; Rathee 
1981; Jewell and Wroth 1987; DeJong et al. 2003; Hight 
and Leroueil 2003; Cerato and Lutenegger 2006; Wang et 
al. 2007; Wu et al. 2008; Wang and Gutierrez 2010; 
Dadkhah et al. 2010; Mirzaeifar et al. 2013; Ziaie Moayed 
et al. 2017; Zahran and Naggar 2020). However, only a few 
of them (e.g., Palmeira and Milligan 1989; Cerato and 
Lutenegger 2006) studied the variation of shear strength as 
a function of specimen size ratios while keeping all other 
influencing factors (such as material, dmax value, density, 
moisture, etc.) constant. These studies along with the 
experimental work of Deiminiat et al. (2022) showed that 
the minimum required W/dmax ratio of 10 stipulated by 
ASTM D3080/D3080M-11 is too small to avoid any SSE on 
shear test results. Deiminiat et al. (2022) further indicated 
that the minimum required W/dmax ratio of 60 is appropriate 
to eliminate the SSE of direct shear tests. Making 
specimens having this minimum required ratio is not a 
problem for fine particle materials with dmax smaller than 1 
mm even with standard shear box of 60 mm in width. For 
coarse granular materials such as gravel, rockfill and waste 
rocks, which usually have large dmax values, preparing a 
specimen with the minimum required W/dmax ratio of 60 can 
become complicated, if not impossible. 

In this paper, an equation is presented to describe 
normalized friction angle as a function of W/dmax ratio. The 
equation is derived from applying best fitting technique to 
the normalized friction angles of the existing data. By using 
this equation, the friction angle corresponding to 
specimens having W/dmax ratio of 60 can be obtained from 
friction angles obtained by direct shear tests on specimens 
having W/dmax ratios smaller than 60.  

 
 

2 PROPOSED EQUATION RELATING NORMALIZED 
FRICTION ANGLE AND W/dmax RATIO 

 
Table 1 is a reproduction of a table published in Deiminiat 
et al (2022). The table includes the authors’ experimental 
data and a part of selected experimental results obtained 
by using an adequate methodology, in which the variation 
of friction angle is only due to the variation of specimen 
size. Another criterion for the section of experimental data 
is the availability of experimental results obtained on large 
enough specimens having a W/dmax ratio of 60. For each 
material with a given dmax, particle shape, density (or void 
ratio), moisture content, ratio and under the same range of 
normal stresses, the friction angle (

ௐ/ௗ೘ೌೣ
) obtained on 

specimens of any W/dmax ratios can then be normalized by 
the friction angle (

଺଴
) obtained on specimens having a 

W/dmax ratio of 60. A relationship can be established 
between the normalized friction angle (W/dmax/60) and 
W/dmax ratio. 
 
 
Table 1. Normalized friction angles of experimental results 
available in the literature (a reproduction of Table 12 of 
Deiminiat et al. 2022) 

 

Material W/dmax 
w/dmax 

(°)



ௐ/ௗ೘ೌೣ


଺଴

 Reference 

Sand 
50 50.1 1.014 Palmeira 

and Milligan 
(1989) 833 49.4 1 

Gravel, Dr 
= 25% 

20 36.5 1.074 

Cerato and 
Lutenegger 
(2006) 

61 34.0 1 

Gravel, Dr 
= 85% 

20 43.0 1.024 

61 42.0 
1 

Gravel, Dr 

= 55% 

20 41.0 1.020 

61 40.2 1 

WR1, dmax 
= 0.85 mm 

45 37.1 1.005 

Deiminiat et 
al. (2022) 

353 36.9 1 

WR1, dmax 
= 1.19 mm 

32 38.0 1.013 

50 37.9 1.011 

252 37.5 1 

WR1, dmax 
= 1.4 mm 

27 38.7 1.027 

43 38.0 1.008 

214 37.7 1 

WR1, dmax 
= 2.36 mm 

16 40.9 1.082 

25 39.1 1.034 

127 37.8 1 

WR1, dmax 
= 3.36 mm 

11 42.1 1.088 

18 40.2 1.039 

89 38.7 1 

WR1, dmax 
= 5 mm 

12 41.4 1.048 

60 39.5 1 

WR2, dmax 
= 0.85 mm 

45 35.3 1.009 

71 35.2 1.006 

353 35.0 1 

WR2, dmax 
= 1.19 mm 

32 36.2 1.006 

50 36.1 1.002 

252 36.0 1 

WR2, dmax 
= 1.4 mm 

27 37.2 1.028 

43 36.4 1.006 

214 36.2 1 

WR2, dmax 
= 2.36 mm 

16 38.2 1.030 

25 37.3 1.005 

127 37.1 1 

WR2, dmax 
= 3.36 mm 

11 40.5 1.083 

18 39.3 1.051 

89 37.4 1 

WR2, dmax 
= 5 mm 

12 40.1 1.044 

60 38.4 1 

 



 

Figure 1 shows the variation of normalized friction angle 
(W/dmax

/60) as a function of W/dmax. An application of curve-

fitting technique leads to an exponential function as follows:  
 
W/dmax

 /60 = a exp[1/W/dmax
b], for 60 ≥ W/dmax ≥ 10       [1a]                                                                                                    

 
W/dmax

 /60 = 1, for W/dmax ≥ 60                                                    [1b]  

 
with a = 0.98 and b = 0.92  
                                                                              

Even though Equation 1 was obtained by applying the 
curve-fitting technique on a limited number of experimental 
results, it can be considered as a general solution because 
the experimental data used in the curve-fitting process are 
of different sources. The equation can then be used to 
predict the value of 60 of coarse granular materials once a 
W/dmax

 is obtained by direct shear tests on not large enough 

specimens. 
 
 

 
Figure 1. The normalized friction angles versus W/dmax 

 
 

3 VALIDATION TEST OF THE PROPOSED 
EQUATION 

 
3.1 Direct shear tests 
 
To test the validity of the proposed equation on granular 
materials with dmax ≥ 5 mm, direct shear tests were first 
performed using a large shear box of 300 mm × 300 mm × 
180 mm. The test specimens have thus W/dmax ratio 
smaller than 60. Equation 1 must be used to predict the 
friction angle corresponding to a W/dmax ratio of 60. 
Secondly, pile tests were performed on the same granular 
materials. The measured repose angles can then be used 
to test the validity of the predicted friction angles because 
the repose angle of a granular material is well-known to be 
equal to the internal friction angle of the granular material 
determined by direct shear test at its loosest state (Miura 
et al. 1997; Ghazavi et al. 2008; Fu et al. 2020; Zheng et 
al. 2021). 

Figure 2 shows the grain size distribution of the three 
tested materials, which were made from a waste rock by 
applying the scalping technique and excluding the over-
sized particles. The obtained materials M1, M2, and M3 

have dmax values of 9.5, 19 and 25 mm, respectively. It 
should be noted that dmax values are used here as an 
identification of the material because the scope of this 
study is to analyze the SSE, not the influence of dmax on the 
shear strength of material.      

The direct shear tests were carried out with the three 
granular materials prepared at the loosest state. Table 2 
presents characteristics of the prepared specimens. The 
specific gravity (Gs) and the maximum void ratio (emax) of 
the specimens are presented.   

 
 

 
 
Figure 2. Grain size distribution curves of the materials  
 
 
Table 2. Specimens prepared for direct shear tests  

Material 
Gs 
(ASTM C127-15) 

emax  
 

Large shear box  

W/dmax T/dmax 

M1, dmax = 9.5 mm 2.60 0.79 32 19 

M2, dmax = 19 mm 2.53 0.74 16 9 

M3, dmax = 25 mm 2.56 0.69 12 7 

 
  
For each material, the friction angle was measured 

three times. The applied normal stresses were 50, 100, and 
150 kPa. The shear load was applied by a shear rate of 
0.025 mm/s. Table 3 shows the three friction angles 
obtained by direct shear tests for each material. The 
average values and the predicted 60 are also presented in 
the table. As an example of calculations for the specimen 
of M3 with the dmax value of 25 mm and the W/dmax ratio 
equal to 12, the measured W/dmax

 is 45.2°. Applying 

Equation 1 leads to:  
 
60 = 45.2° /0.98*exp [1/12^0.92] = 41.8° 
  
Table 3. The friction angles W/dmax

 measured by direct 

shear tests 
 

Material W/dmax W/d
max

 (°) Avg. W/d
max

 (°) 60 (°) 

M1, dmax = 

9.5 mm 
32 

40.8 
41.2 40.5 41.2 

41.5 

0.9
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M2, dmax = 

19 mm 
16 

43.4 
43.9 41.6 43.7 

44.5 

M3, dmax = 

25 mm 
12 

44.9 
45.2 41.8 45.1 

45.5 
 
 
3.2 Pile tests 
 
To test if the predicted 60 values given in Table 3 are valid, 
pile tests were performed on each of the three tested 
granular materials. The pile tests were performed by 
keeping a funnel completely close to the top of the growing 
heap, as shown in Figure 3. On the figure, hp is the height 
of the pile (mm) and dp is the bottom diameter of the pile 
(mm). The repose angle p can be obtained by: 
 
p = tan-1 (2hp / dp)                                                            [2]  
  
 

 
 
Figure 3. Schematic view of pile test setup in the laboratory  
 
 

Figure 4 shows the variation of measured repose 
angles as a function of pile height hp, normalized by dmax 
value for materials M1 and M3. The results tend to indicate 
that there is no size effect in the measurement of repose 
angle.  
 
 

 
Figure 4. Variation of the p with hp/dmax for M1 and M3 
 
 

Table 4 shows the repose angles and the 
corresponding average values of the three tested granular 
materials. Despite the scope of this study is not on the 

influence of dmax on the shear strength, it is interesting to 
note that the repose angle increases as the dmax value 
increases. This corresponds well to what one usually 
observes in field with rockfill dam or waste rock piles. A 
waste rock pile having larger dmax values usually exhibits a 
larger repose angle than a structure made of sand with 
smaller dmax value. 
 
 
Table 4. The p and their average values obtained by the 
pile tests for the three materials  
 

Material 
hp 
(mm) 

dp/2 
(mm) p (°) Avg. p (°) 

M1, dmax = 9.5 mm 
176 209 40.1 

40.0 175 210 39.8 
172 205 40.0 

M2, dmax = 19 mm 
172 200 41.0 

41.3 177 201 41.4 
180 203 41.6 

M3, dmax = 25 mm 
180 201 41.8 

41.7 177 199 41.7 
176 198 41.6 

 
 
3.3 Results analysis 
 
Table 5 shows comparisons between the friction angles 
(60) predicted by applying Equation 1 and the measured 
repose angles (p). The good agreements between the 
predicted and measured friction angle indicate that 
Equation 1 can be used to determine the 60 value through 
direct shear tests on not large enough specimen.  
  
 
Table 5. The 60 values predicted by applying Equation 1 to 
the measured W/dmax

 of not large enough specimens and 

the measured p values  

Material Measured p (°) Predicted 60 (°) 

M1, dmax = 9.5 mm 40.0 40.5 

M2, dmax = 19 mm 41.3 41.6 

M3, dmax = 25 mm 41.7 41.8 

 
 
4 DISCUSSION AND CONCLUSIONS 
 
In this work, an equation was developed to describe the 
friction angle as a function of the W/dmax ratio. The validity 
of this equation has been tested using direct shear test and 
pile test outputs. However, it should be noted that the 
experimental data used for validation are limited to the dmax 
value of 25 mm. In addition, only one type of waste rock 
was used to prepare the materials. More experimental 
works on different materials with larger particle sizes 
having different properties are necessary to see if the 
equation still remains valid. 

The pile test results indicate that the measured repose 
angles are insensitive to the pile size. These results tend 
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to indicate that the repose angle of large waste rock piles 
can be determined by performing small pile tests. More 
experimental tests are required to see whether this 
conclusion is universally valid.    

The results of this study further showed that the friction 
angle increases as the dmax value increases. This trend is 
not in the agreement with that reported by the previous 
studies for angular particle materials (Varadarajan et al. 
2003, 2006; Abbas 2011; Honkanadavar et al. 2014; 
Dorador et al. 2017, 2020; Deiminiat et al. 2020). This 
observation is probably related to the low normal stresses 
used in this study compared to the large normal stresses 
were applied to the test specimens in the previous studies. 
The decrease in friction angle with increase in dmax values 
has also been explained by the size effect of rock strength 
(Baecher and Einstein 1981; Li et al. 1999, 2001; Aubertin 
et al. 2000; Sheng-Qi et al. 2005; Li et al. 2007; Ovalle et 
al. 2014), but it is not clear if the SSE was considered in 
the results reported by these studies.     

Despite the above mentioned, it can be concluded that 
the proposed equation has been validated, at least partly. 
It can be used to determine the friction angle of coarse 
granular materials exempt of SSE by direct shear tests on 
not large enough specimens. 
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