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ABSTRACT 
 
Vortex-induced vibration (VIV) is considered a significant cause of fatigue failure in free-spanned offshore pipelines. The 
VIV of submarine pipelines involves several physical and structural parameters, where detection of the most influencing 
parameters for this phenomenon may facilitate the robust VIV response simulation. The pipeline interaction with the seabed 
soil has a significant impact on VIV-induced fatigue. In the current study, the VIV fatigue performance of multi-spanned 
subsea pipelines (MSSP) was simulated by incorporation of seabed interaction effects and using Decision Tree Regression 
(DTR). To this end, initially, the key physical parameters governing the VIV fatigue performance of MSSP were introduced. 
Subsequently, using these parameters, a set of Decision Tree Regression (DTR), Random Forest Regression (RFR), Extra 
Tree Regression (ETR), and Support Vector Regression (SVR) models were developed. Ultimately, by analysis of ML 
models, it’s been found that DTR algorithm has excellent performance for modeling VIV fatigue and stress of multispanning 
pipelines. The obtained result can pave the way for proposing a robust and cost-effective alternative for the initial phases 
of the pipeline design projects.  
 
RÉSUMÉ 
 
Les vibrations induites par le vortex (VIV) sont considérées comme une cause importante de défaillance par fatigue dans 
les pipelines offshore à portée libre. Le VIV des pipelines sous-marins implique plusieurs paramètres physiques et 
structurels, où la détection des paramètres les plus influents pour ce phénomène peut faciliter la simulation robuste de la 
réponse VIV. L'interaction du pipeline avec le sol du fond marin a un impact significatif sur la fatigue induite par le VIV. 
Dans la présente étude, les performances de fatigue VIV des pipelines sous-marins à plusieurs travées (MSSP) ont été 
simulées en incorporant les effets d'interaction du fond marin et en utilisant la régression par arbre de décision (DTR). À 
cette fin, dans un premier temps, les paramètres physiques clés régissant les performances de fatigue VIV du MSSP ont 
été introduits. Par la suite, à l'aide de ces paramètres, un ensemble de modèles de régression d'arbre de décision (DTR), 
de régression de forêt aléatoire (RFR), de régression d'arbre supplémentaire (ETR) et de régression de vecteur de support 
(SVR) a été développé. En fin de compte, par l'analyse des modèles ML, il a été constaté que l'algorithme DTR a 
d'excellentes performances pour modéliser la fatigue VIV et le stress des pipelines multi-spanning. Le résultat obtenu peut 
ouvrir la voie à la proposition d'une alternative robuste et rentable pour les phases initiales des projets de conception de 
pipelines.  
 
1 INTRODUCTION 
 
Subsea pipelines are a critical element in the transportation 
of hydrocarbon products. While crossing uneven seabed, 
these pipelines might be exposed to freespanning 
conditions, where there is a good chance of vortex 
shedding vibrations to occur. Vortex-induced vibration 
(VIV) fatigue damage is one of the most important issues 
in sub-sea pipeline projects, therefore, the prediction of a 
pipeline’s performance against VIV loads has become an 
essential topic in offshore engineering.  Experimental study 
of VIV on sub-sea pipelines is expensive; therefore, a 
detailed numerical simulation of freespanning pipelines 
can be a logical alternative for experimental studies. In 
addition, the performance of subsea pipelines against VIV 
damage is exceptionally non-linear and is dependent on 
different parameters. Regarding the non-linearity in 
pipeline’s behavior and plenty of parameters influencing 
fatigue performance, there will be a great number of case 
studies and the size of the output database will be 
immense. Regarding the situation, having an industry 

verified finite element model and employing evolutionary 
methods for post-processing study cases can be a 
milestone in understanding the situation and prediction of 
fatigue performance of freespanning pipelines. 

Regarding numerical simulation of freespanning 
subsea pipelines, a comparison has been made between 
DNV offered software, known as FATFREE, and newly 
presented subsea modeling software SPAN2B (Pereira et 
al. 2008).  The comparison process was to validate the 
performance of SPAN2B for single-span and 
multispanning pipelines. Since the data presented in their 
work is the most recent and most detailed data in VIV 
simulation, their findings can be a good source for the 
model verification process. 

In 2018 evolutionary methods were employed for the 
VIV modeling of a full-scale bridge(Li et al. 2018). The 
research was based on long-term real data carried out. The 
study was about the VIV behavior modeling of a real-world 
bridge against vortexes caused by wind flow. The input 
database was filled by sensors installed on the bridge, and 
the dataset was a collection of data from sensors installed 



 

on the bridge and accumulated for over six years. They 
employed a decision tree algorithm to classify VIV modes 
where speed and flow direction of interacting fluid were 
inputs of the model. The proposed model could identify VIV 
modes with 94% accuracy. This study was single case 
research and was conducted on a dataset that is not 
regeneratable, therefore extended application for their 
model is impossible.  

Classical machine learning methods have been 
employed for modeling dynamic fluid loadings (Peeters et 
al. 2020). They have developed a mapping method to 
relate wake variables to fluid loading. Their model 
employed machine learning to map the output velocity field 
to the transverse force coefficient on a submerged circular 
cylinder. The accuracy of the model was 95%. The trained 
neural network was simple, and the study proved that even 
simple neural networks can be useful in VIV problems but 
like the previous study, the studies were performed on a 
very specific case study and there is no guarantee that the 
developed model can be useful for general VIV problems. 
Machine learning and specifically genetic algorithm can be 
employed for system identification of VIV-involved systems 
(Ooi et al. 2020). In 2020, an iterative algorithm has been 
developed by using machine learning to find a reduced 
dimension for physical parameters affecting VIV. The 
results propose a VIV parametric model for a pipe with 
Helical Strakes where the model is developed by using the 
improved recursive least squares method. Input data for 
this method were not from practical measurements and all 
were artificially generated (Ma et al. 2020). Output results 
had been validated by a genetic algorithm. The goal of this 
study was to reach a minimum amplitude of VIV. In 2021 a 
method has been developed for the classification of vortex 
shedding modes of bladeless wind turbines (Cann et al. 
2021). 

The research was based on practical data from 
measurements on small and local wind turbines and 
derived data from conducted simulations. Machine learning 
was deployed on data output from simulations.  

Machine learning techniques played a vital role in the 
development of the final model which could successfully 
classify vortex shedding modes produced by the oscillating 
cylinder of a bladeless wind turbine. 

Evolutionary methods can be useful in the active control 
of pipeline under VIV loads and ocean energy harvesting 
(Mei et al. 2021) evolutionary methods for active control of 
a cylinder under VIV loads was successful. The method 
was to actively control the oscillation by a jet flow which is 
controlled by data from an artificial neural network. A 
control algorithm based on deep reinforcement learning 
was used to train a artificial neural network, whereas 
OpenFoam was utilized for modeling computational fluid 
dynamics (CFD). 

Application of machine learning in VIV extended for 
numerical simulation of two parallel pipes by applying 
lattice Boltzmann method for computational fluid dynamic 
modeling (Gu et al. 2021). The main goal of the research 
was to predict the amplitudes upstream and downstream 
by machine learning (ML) algorithms. Firstly, they have 
extracted four main parameters affecting amplitudes of the 
upstream cylinder and downstream cylinder and used them 
for training two machine learning models. Secondly, three 

ML techniques namely decision tree regressor (DTR), 
gradient boosting regressor tree (GBRT), and random 
forest (RF) techniques have been evaluated to reveal the 
most accurate method for this study. Results show that the 
GBRT method has the most capability to predict 
amplitudes of upstream pipe and downstream pipe. 

In the field of turbulent flow studies, in 2021, a solution 
has been proposed in which a neural network is trained by 
data from parameterized Navier-Stokes equations. The 
simulations consist of a turbulent flow with Reynolds 
number 104 passed through a cylinder under VIV loads(Bai 
and Zhang 2022). 

Presented research aims to investigate the 
performance of classic machine learning regression 
methods for the prediction of VIV fatigue performance of 
multispanning pipelines. In this study, a parametric study is 
performed on an FEA model of a subsea freespanning 
pipeline. A dataset of 14800 different conditions of seabed 
and pipe characteristics has been prepared. Afterward, 
four different machine learning algorithms including DTR, 
ETR, RFR, and SVR selected to train ML models for the 
prediction of VIV stresses in inline, crossflow, and 
maximum inline and crossflow stresses. Finally, based on 
the best model, the most influential parameters affecting 
VIV fatigue performance were selected. 
 
2 FINITE ELEMENT MODEL 
 
In this research, ABAQUS software was carried out for 
simulation of the pipeline’s behavior under freespanning 
conditions. Soil is modeled as sets of springs in 3 
dimensions based on the Winkler foundation. Values of 
spring stiffness are drawn from DNV RP-F105 (DET 
NORSKE VERITAS 2006)equal to characteristics of 
medium sand seabed. 

Stresses in inline and crossflow directions have been 
calculated based on DNV RP-F105. Soil stiffness has been 
excluded from parametric studies, therefore exact 
compliance between verified simulation and case studies 
will remain intact. Soil stiffness parameters can be 
achieved based on Equation 1 and Equation 2. 

 Parameters ��, ��, and �� are equivalent spring 
stiffness for vertical, lateral, and axial directions, 
respectively: 

 

 �� = ���	
 ��
 ��� + �
� √�                          [1]

 �� = �� = ���1 + �� ��
 ��� + �
� √�              [2] 

 
Where � is the outer diameter of the pipe, 

���  is the 

relative density of steel pipe to ambient water. Coefficients �
 and �� are selected from. Soil parameters have been 
presented in Table one. 
  



 

 
Table 1. Dynamic stiffness factor and static stiffness for 
pipe-soil interaction in sand 

Sand type 

�
 
���

���� 

   �� 
���

���� 

��,! 
" ���� # 

Loose 10500 9000 250 

Medium 14500 12500 530 

Dense 21000 18000 1350 

 
 

Figure 1 presents a schematic of seabed topography. 
Modeled multispanning condition consists of 2 consecutive 
single spans which are separated by a shoulder bump. It is 
assumed that the shoulder and seabed are at the same 
level and gap depth remains constant through the length of 
span one and span two. 
 
 

 
Figure 1. Seabed topography of multispanning pipelines. 

 
Figure 2 and Figure 3 demonstrate exemplary mode 

shapes of pipelines in crossflow and inline directions. 
Detailed information about the model of exemplary mode 
shapes is listed in Table 2. 

Since gap depth and pipe depth are relatively much 
smaller than span length, the pipeline is rendered to display 
a larger diameter than the actual value and pipeline 
deformations within natural mode shapes are up scaled for 
better visual understanding. 

 
 
Table 2.Sample multispanning model information. 

Parameter Value Unit 

Soil type Medium sand - 

Shoulder width 4x pipe diameter - 

Total spanning length 60x pipe diameter - 

Minimum span length 0.40x total span length  

Gap depth 1.5x pipe diameter  

Pipe diameter 8.625 inch 

 
 
 

 
 

 
Figure 2. Sample mode shape of freespanning pipeline (a) 
Crossflow (b) Inline. 

 
2.1 Model Validation 
 

Seabed soil properties meet the class of Medium-Sand 
based on DNV RP-F105. In order to verify the FEA model, 
a comparison was performed between the simulated model 
and the results of DNV FATFREE and SPAN2B software 
presented by A.Pereira. 

A comparison was conducted based on values of first 
natural frequencies in inline and crossflow directions 
between the developed model and results of DNV 
FATFREE and SPAN2B software. The model is a single-
spanned pipeline with properties mentioned in Table 1. 
 
Table 3. Characteristics of validation model. 

Parameter Value Unit 

Pipe outer diameter 12.75 inch 

Pipe wall thickness 0.875 inch 

Soil type Medium Sand - 

Freespanning length1 60 up to 240 - 
1Ratio of freespanning length over pipe outer diameter. 
 
 
First modes of natural frequencies both in in-line and crossflow 
directions have been considered as a comparison subject. The 
simulated model showed a similar trend of response to increase in 
span length with DNV FATFREE and SPAN2B. 
 
 



 

 
Figure 3: First mode natural frequency comparison. 

 
Based on the information presented in Figure 3, the 
developed FEA model shows similar behavior to software 
SPAN2B and DNV FATFREE. Trends of dropping values 
of first natural frequencies in Inline and Crossflow direction 
follow a similar pattern to SPAN2B and DNV FATFREE, 
therefore, the model is trustable, and we can perform the 
parametric study. 
 
2.2 Parametric Study 
 
To achieve a reliable prediction model by using machine 
learning methods, an abundant number of different cases 
is necessary. To attain a reliable ML dataset, a thorough 
parametric study was performed. There are seven varying 
parameters in the ML models, we can assume them as 
model features. Most model features are reformed with 
other parameters to make the final feature a dimensionless 
parameter. 

 
The physical and mechanical properties of pipes are 

selected from standard engineering pipes. Pipe schedule 
XS is the selected reference for the pipe’s physical 
dimensions. Pipe mechanical properties are assumed to be 
identical to industrial steel which is used in the offshore 
industry. 

Pipe and soil properties have been chosen from 
standard pipes and approved DNV(DET NORSKE 
VERITAS 2021) reports respectively. The final dataset has 
a total of 14800 entries, where every entry has a distinct 
set of values for attributed features. After the preparation 
of output files by ABAQUS, post-processing calculations 
were carried out by using python script, and finally, inline, 
crossflow, and maximum of Inline and crossflow mode 
shapes were calculated and considered as target values. 
Therefore, we have three targets. Target values for 
stresses for inline and crossflow directions can be 
calculated based on DNV RP-F105. 

 $%&'()1 = *+� = 2. .+� . ��/0 � . 12,+�. 34                    [3] 

 $%&'()2 = *�5 = 2. .�5 . ��60 � . 78. 34                    [4] 

 

$%&'()3 = max=$%&'()1, $%&'()2>                           [5] 
 
 
Where *+� and *�5 are VIV stress in inline and crossflow 

directions respectively. .+� and .�5 are unit stress 

amplitude in respective directions. The 
�60  and 

�/0  are also 

VIV amplitudes in crossflow and inline direction which can 
be calculated by methods prescribed in DNV RP-F105. We 
also need to check for the occurrence of crossflow induced 
inline vibration, which is called the figure 8 condition, and if 
necessary, update inline stresses. 12,+� is the reduction 
factor for competing inline modes, 34 is the safety factor for 
stress amplitudes, and 78 is the amplitude reduction factor 
due to damping. 

Inline and crossflow VIV amplitudes are presented in 
Figure 4 and Figure 5. 

 
 

 
Figure 4. Inline VIV amplitude(DET NORSKE VERITAS 
2006). 

 
 

 
Figure 5. Crossflow VIV amplitude (DET NORSKE 
VERITAS 2006). 

 
3 MACHINE LEARNING METHODS 
 
Four different ML methods have been considered for 
regression between input features and output targets. 
Implemented methods are Decision Tree regression, 
Random Forest regression, SVM regression, and Extra 
Tree regression(Rishal Hurbans 2020).  

In the Decision Tree Regression model (DTR), the 
model divides the dataset into smaller subsets and repeats 
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this process until there is enough homogeneity in the final 
subsets. Statistical parameters can interpret the 
performance of ML models as R2 score, root mean square 
error, and mean absolute error between predicted values 
and real values. 

The random forest regression algorithm (RFR) is also 
based on regression trees, but despite the decision tree 
algorithm, in random forest, multiple trees are developed 
and the tree with the best performance is chosen as the 
final model. In RFR, in addition to given data, bootstrap 
replicas are also generated and used in decision tree 
developments. Bootstrap replicas are data that are 
generated based on given dataset to fill missed data or to 
improve the quality of decision tree. 

Extra trees regression algorithm (ETR) is primarily 
similar to RFR, but despite RFR, in ETR, only the whole 
given dataset is used for developing trees, and there is no 
bootstrap replica. Like RFR, in ETR, the model with the 
best performance will be chosen as the final model. 

Support vector regression machine (SVM) is an ML 
algorithm which can be useful for both classification and 
regression (SVR), in this method, data of a dataset with m 
features is plotted in a m-dimensional space where each 
entry is a datapoint. In this space the value of each feature 
is the value of a particular coordinate. Then, the goal is to 
find the hyperplane that best differentiates datapoints into 
two subsets. This algorithm can be used for both 
classification and regression problems. 

 
 

 
3.1 Model Features 
 
The dataset for this study has 6 features. Except for current 
velocity and pipe diameter, all other features have been 
defined as dimensionless parameters. Definition of these 
features are as follows: 

 D represents pipe diameter, overall, 11 different 
sizes for pipe are considered. The values have 
been extracted from engineering references from 
the category of pipe schedule XS which is suitable 
for heavy-duty operations. Applicable pipe sizes 
range from size 5 to 24 based on a list of standard 
pipe sizes. 

 Parameter Relative wall thickness is defined as 
the inverse of the respective pipe’s wall thickness, ), to the pipe’s diameter �. The value can be 

attained by the ratio 
0? . The pipe’s wall thickness 

is assumed to impact the pipe’s strength and 
deflection. 

 Gap depth is a dimensionless variable expressing 
the ratio of the depth of freespanning, (, to pipe’s 
diameter �. This feature can be represented as 

@0. 

 The feature freespanning length or total 
freespanning length is the ratio between the 
length of total multispanning length as shown in 
Figure 1 to pipe diameter �. 

 Span 1 is the ratio of the span length 1 to the total 
freespanning length. 

 Current is defined as current flow velocity; this 
parameter plays a vital role in calculating reduced 

velocity. Current velocity ranges from 0.1 m/s up 
to 4m/s. 

 Feature shoulder width can be calculated as a 
ratio of the width of the middle support shoulder 
to the pipe diameter. This feature is 
dimensionless. Larger shoulder width can support 
the pipeline and decrease vibration amplitude 
because of the soil stiffness effect and a narrow 
shoulder may trigger a high concentrated load on 
shoulder edges. 

 
  
Table 4. Dataset features. 

Features Value Unit 

D Sizes 5 to 24 SCH XS m 

Relative wall thickness Sizes 5 to 24 SCH XS - 

Pipe schedule XS - 

Gap depth 0.5 - 3 x pipe diameter - 

Freespanning length1 60 up to 240 - 

Shoulder width 1 – 5 x pipe diameter  

Span 1 ratio2 0.1-0.5 - 

Current 0.1-4 m/s 

1 Total freespanning length including span 1, span 2, and 
shoulder. 
2   Ratio of length span1 to total freespanning length. 
 

A linear correlation between all features and targets is 
shown in Figure 6. This correlation presents a degree of 
linear relativity between every two sets of values, including 
features, targets, or a feature and a target. This correlation 
is just linear and can give an overall perspective on the 
dependency of features and targets. This parameter is 
dimensionless and is defined as the fraction of 1. Number 
1 represents 100% relativity which is only possible if we 
compare a data with itself, number -1 indicates that two 
parameters are negatively related, meaning that an 
increase of parameters happens when the other parameter 
is decreased. Number 0 indicates that two parameters are 
linearly independent. 



 

 
 
Figure 6. Linear correlation between all features and 
targets. 

3.2 Model Performance Evaluation  
 
In this research, four different machine learning methods 
have been utilized including decision tree regression, 
random forest regression, extra tree regression, and 
support vector machine regression. In the first step, the 
dataset is split into training and test divisions, and then all 
individual models have been trained for every set of targets 
and learning methods.  

The performance of each method on targets has been 
studied individually and method performance evaluated by 
measuring performance indicators including the R2 score, 
mean absolute error, and square root mean error. R2 score 
is amount of variance in the predictions by the dataset, this 
parameter is explained in Equation 6: 

 

7� = 1 A ∑�CD	CDE�∑�CD	CF�                                                   [6] 

 
Where GHE is regression outcome. For mean absolute 

error we have: 
  

 I.J = ∑�CD	CDE�K                                                    [7] 

 
Where, n is the total number of entries (data points). 

And for mean square error we have: 
  

7I*J = L∑�CD	CDE�M
K                                                   [8] 

 
 

3.3 Machine Learning Model Implementation 
 
For a true evaluate the performance of machine learning 
models, all the models have been trained with identical sets 
of training data. To achieve better performance, values of 
features have been scaled into similar data ranges. In this 

study, all the features have only positive values, therefore 
they all have been linearly scaled into values between 0 
and 1. 

Despite features, target parameters have not been 
scaled for models of DTR, ETR, and RFR, but target values 
were so imbalanced for the SVR model properly, therefore, 
targets have been transformed into highly balanced data 
ranged by the BOXCOX method and after training SVR 
model, a grid-search performed on trained SVR model to 
obtain best parameters regarding the data.  

After tuning, the SVR performance improved. Prior to 
the evaluation of the SVR model, predicted values for the 
target have been inversely transformed from the BOXCOX 
to the original range and then performance indicators for 
the SVR model were calculated. The formula of the 
BOXCOX transform is presented in Equation 9, where N 
can be identified by try and error, built-in function for 
boxcox in python libraries can predict the value of N. 

 

G�N� = OCP	�Q        RS N T 0;log G        RS N = 0                                     [9] 

 
DTR model had excellent performance on all of the targets. 
The results from the SVR model were not satisfying, 
therefore, using the grid-search technique, a hyper 
parameter tuning was performed on the SVR model to 
improve model accuracy. RFR and ETR models showed 
good performance, but overall, DTR was better than 
others. 

 
 

Table 5. Performance of ML methods on Inline stress 
prediction. 

Model R2 Score MAE RMSE 

DTR 0.99 2.91 33.4 

ETR 0.99 4.33 42.5 

RFR 0.99 5.85 38.2 

SVR 0.93 45.3 134 

 
 

 
Table 6. Performance of ML methods on Crossflow stress 
prediction. 

Model R2 Score MAE RMSE 

DTR 0.99 6.33 51.5 

ETR 0.99 9.03 41.3 

RFR 0.99 6.33 51.5 

SVR 0.93 340 832 

 
 

 



 

Table 7.  Performance of ML methods on Maximum stress 
prediction. 

Model R2 Score MAE RMSE 

DTR 0.99 5.97 41.8 

ETR 0.99 7.88 30.8 

RFR 0.99 12.9 42.9 

SVR 0.96 227 608 

 
 

After analyzing the performance of each ML model, the 
best models have been chosen for extraction of feature 
influence on targets. Figure 7, Figure 8, and Figure 9 
display the influence of each parameter on inline stress, 
crossflow stress, and maximum stress respectively. The 
most important parameters for each stress are listed in 
Table 8. 
 
 
Table 8. Most Influential parameters on Fatigue stress. 

Stress Most important parameter 

Inline stress Current velocity 

Crossflow stress Total freespanning length 

Maximum stress Total freespanning length 

 
 

 
Figure 7. Importance of parameters on Inline stress. 

 
 

 
Figure 8. Importance of parameters for Crossflow stress. 

 
 

 
Figure 9. Importance of parameters for Maximum stress. 

 
4 CONCLUSION 
 
This research was conducted to evaluate the performance 
of machine learning algorithms on VIV fatigue life 
prediction of multispanning pipelines. VIV stresses are key 
parameters affecting VIV fatigue life expectancy of 
multispanning pipelines. In this research, a thorough, 
parametric study was performed on a finite element model 
developed in ABAQUS software. The post-processing step 
was performed based on DNV RP-F105 and the final 
dataset has been used for training different machine 
learning models. 

It has been discovered that the DTR model has 
excellent performance for modeling and predicting VIV 
stresses. The results indicate that total freespanning length 
in a multispanning pipeline is the key parameter for VIV 
stresses which lead to VIV.  For inline VIV stress, current 
velocity is the most critical parameter, which positively 
affects the inline stress, meaning that higher current 
velocity will lead to larger inline VIV stress. For crossflow 
VIV stresses, total freespanning length is the most 
important parameter. And regarding the maximum 
stresses, overall, crossflow stress is generally larger than 
inline stress and governs the maximum stress value. 
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