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ABSTRACT 
Despite the belief in superior stress predictions by the hybrid finite element method during the early years, it did not become 
popular in geomechanics, likely because of limitations associated with nonlinear analysis and the additional computational 
steps that are required. Nevertheless, serviceability often controls the design of foundations.  This implies that the 
conditions are far from the ultimate limit state and stress analysis based on small deformation elastic theory is most 
applicable.  If there is an issue with an analysis it is the assumption of isotropy and not nonlinearity due to neglecting plastic 
strain hardening.  An assumed stress hybrid framework is adopted in which all element stresses vary linearly, and pore 
pressures are constant. Performance comparisons are made with regular and hybrid formulations for a footing problem 
that examines the prediction of stresses due to a surface load and the gravity-driven creep of an ice slope that includes 
nonlinear flow. The object of this paper is to present a displacement-pressure (u-p) 4-node quadrilateral element that can 
handle the incompressibility of saturated soil and ice creep.  This paper addresses how to handle body forces and 
nonlinearity. 
 
RÉSUMÉ 
Malgré la croyance en des prévisions de contraintes supérieures par la méthode des éléments finis hybrides au cours des 
premières années, elle n'est pas devenue populaire en géomécanique, probablement en raison des limitations associées 
à l'analyse non linéaire et des étapes de calcul supplémentaires nécessaires. Néanmoins, l'aptitude au service contrôle 
souvent la conception des fondations. Cela implique que les conditions sont loin de l'état limite ultime et que l'analyse des 
contraintes basée sur la théorie élastique des petites déformations est la plus applicable. S'il y a un problème avec une 
analyse, c'est l'hypothèse d'une isotropie et non d'une non-linéarité à cause de la négligence de l'écrouissage plastique. 
Un cadre hybride de contraintes supposées est adopté dans lequel toutes les contraintes des éléments varient linéairement 
et les pressions interstitielles sont constantes. Des comparaisons de performances sont faites avec des formulations 
régulières et hybrides pour un problème de semelle qui examine la prédiction des contraintes dues à une charge de surface 
et le fluage par gravité d'une pente de glace qui comprend un écoulement non linéaire. L'objet de cet article est de 
présenter une pression de déplacement (u-p) Élément quadrilatère à 4 nœuds qui peut gérer l'incompressibilité du sol 
saturé et le fluage de la glace. Cet article explique comment gérer les forces corporelles et la non-linéarité 
 
 
1 INTRODUCTION 
 
Engineers generally do not design for a structure to fail. 
Instead, they stay away from failure conditions as much as 
possible.  An exception is perhaps slope stability.  For the 
more usual situation, elastic solutions appear to be most 
suitable.  If there is an issue, it is most likely the assumption 
of isotropy. 

In the early years as hybrid formulations were 
introduced, there was a feeling that the corresponding finite 
elements would be superior relative to the displacement-
based formulations given that local equilibrium is satisfied 
exactly.  The acceptance of this approach never really did 
prevail given the challenges associated with handling 
nonlinear problems and body forces. It is also difficult to 
find literature that treats body forces.  One exception is the 
contribution made by Karchewski et al. (2016). 

The objectives of this paper are to address the matter 
of providing a further contribution dealing with body forces, 
demonstrate the treatment of a nonlinear constitutive law, 
and present a mixed displacement-pressure (u-p) analysis 

strategy that implements 4-node hybrid finite elements 
(MH-4) for problems in which full incompressibility is 
encountered. The theoretical background for hybrid 
elements is well established and may be found in Pian and 
Wu (2005) and the work of Bratianu (1980). Owing to the 
similarity of the field equations for the incompressible 
displacement formulation and those for creeping flow, the 
finite element formulation applies to both solid and 
creeping solid problems.  Whereas displacement u and the 
shear modulus G characterize a solid's motion and material 
stiffness, respectively, the corresponding variables for 

fluids are velocity and viscosity .  Examples are presented 
dealing with an undrained short-term settlement under a 
footing and slope creep of ice. 
 
1.1 Background 
 

In geomechanics, large strain plastic deformations or 
creep strain rates are nearly or fully incompressible.  
During the early years of finite element development, there 
was a tendency to focus on the development of high-order 



 

finite elements such as the 2-D 6- and 8-node 
isoparametric displacement elements.  They performed 
better than the lower order ones that displayed volumetric 
locking and non-physical pressure variations for conditions 
approaching incompressibility. Chapter 4 of Hughes (2000) 
provides a nice overview of the causes of the pathological 
behaviors in low-order elements and of mitigation 
procedures. 

The philosophy of favoring high-order elements has 
changed leading to the development of various volumetric 
strain and pressure enhancement techniques that mitigate 
the parasitic behavior of 4-node displacement elements; 
see, e.g., Detournay & Dzik (2006) and Bonet &Burton 
(1998).  The preference for low-order elements lies largely 
in the greater flexibility to generate complex meshes and to 
incorporate adaptive finite element strategies.   

A natural element for rectangular domains is the 
quadrilateral. Unfortunately, the conventional shape 
functions for the D-4 element are based on incomplete 
bilinear interpolation that leads to shear or volume locking; 
see Hughes (2000). Furthermore, non-physical pressure 
variations tend to accompany volumetric locking. These 
variations (checker-boarding) can be filtered via 
smoothening as shown by Sani et al, (1981). Nevertheless, 
smoothening hides the actual stress predictions that are 
tied to the displacement field including the non-physical 
pressures. 

Mixed displacement-pressure (u-p) formulations show 
some success in dealing with incompressible boundary-
valued problems.  The 4-node quadrilateral with piecewise 
linear variations in displacement and constant pressure is 
the simplest element that can be implemented within the 
framework of mixed variational principles, cf. Hughes 
(2000).  When a material is fully incompressible, this mixed 
element (M-4) satisfies the incompressibility constraint at 
the element level exactly in the average sense, although 
not locally. This element performs poorly for some 
problems, which necessitates smoothening techniques to 
recover the physical pressures.  

According to Pian and Lee (1976), assumed stress 
hybrid elements are less susceptible to constraints on 
volume change.  The strains are uncoupled from the 
displacement gradients thus mitigating the parasitic 
behavior.  Thus, for an incompressible element, there is 
only one constraint that ensures that the volume of the 
element does not change, whereas, for the displacement 
formulation, the number of incompressibility constraints is 
the same as the number of integration points that are 
required for exact integration.  It may also be argued that 
the stress field within a hybrid element is more realistic. 
Moreover, by selecting a complete polynomial 
approximation, the solution is invariant to the selection of 
the global coordinate system. 
 
 
2 THEORETICAL PRELIMINARIES 
 
2.1 Notation 
 
To keep the exposition as simple as possible, we consider 
the deformation of an incompressible, 2-D isotropic, elastic 
solid that occupies an area A and unit thickness with 

boundary S on a single element.  Using index notation, 
each point is represented by Cartesian location xi with 

displacements ui where    1, 2i or when using matrix 

notation by  = ,
T

x yx  with  = ,
T

u vu , cf. Malvern (1969)  

The comma operator is used to denote differentiation of a 

function f, i.e., =  ,i if f x .  

Figure 1 shows a typical quadrilateral domain, where 
the origin of the local x-y system is placed at the geometric 
centroid. This selection has the attractive property that all 
first-order moments of an element domain vanish when 

constructing the volume integrals, i.e., = =  0xdA ydA .  

Also included is the s-t natural coordinate system. 
 

 
 

Figure 1:  Quadrilateral element showing x-y and s-t 
coordinate systems. 
 
  
2.2 Field Equations 
 
We begin by considering a 2-D incompressible, plane-
strain, saturated soil of unit thickness. Let us assume that 
the solid is in quasi-static equilibrium such that the total 

stress is given by ij ij ijp  = + , in which p is the pore 

pressure (mean normal stress) and ij   represents the 

effective stress with ij being the Kronecker delta. We may 

also write in Voigt/vector notation p= +σ σ M , with

=   1 1 0
T

M  representing the Kronecker delta. Given the 

body force  ig , the differential equation for equilibrium in 

the xi direction is,  
 
 

  + = → + =, 0 T
ij j ig L σ g 0   in A  [1] 

 
 
subject to stress and displacement boundary conditions 
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i ij j it n t t Gσ t   on TS   [2] 
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with a caret implying prescribed tractions ˆ
it  on the surface 

TS  and displacements ˆ
iu  on uS . The matrix L is a linear 

differential operator operating on stress, which for two 

dimensions is 
T

xx yy xy   =
 

σ .The components of 

the unit normal to the surface are represented by jn , which 

are contained in matrix G.   
To the equilibrium equations, we add the relation 

between strain ij  and displacement iu  

 
 

( ) = + → =, ,

1

2
ij i j j iu u ε Lu    [4] 

 
 
as well as the that between effective stress and strain. For 
a saturated, incompressible elastic soil, we assume

1− = → =σ Dε ε D σ  with σ  being the effective stress and 

−1D the compliance matrix given by 
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1
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 −

− − 
 

= − − 
 
 

D     [5] 

 
  
in which G is the shear modulus and   represents 

Poisson’s ratio. When using engineering strain, 
T

xx yy xy   =
 

ε with  = 2xy xy  for 2-D. 

 
2.3 Variations of Variables in Quadrilateral Element 
 
The displacements and the strain field for the 4-node 
displacement element (D-4) are usually defined via 

= → =u Na ε Ba , in which N contains the bilinear 

interpolation functions for displacement that depends on 
natural coordinates (s-t) and a is a vector of nodal 

displacements with =B LN representing the strain-
displacement matrix (Bathe 1996). Strictly speaking, 
displacement interpolation inside the domain of an element 
is not required for a hybrid formulation.  

In what follows, the variation of the homogeneous 
solution for the effective stress within a hybrid element is 
approximated by using a complete linear polynomial for all 
stress components, 
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with b containing the stress coefficients. When using 
complete polynomials, the predicated state of stress at a 

point is independent of a rotation of the frame of reference. 
It is important to emphasize that the approximation of 

 satisfies the homogeneous solution for the equilibrium 
equation exactly. The polynomial interpolation for mean 
normal stress (pore pressure) is constant. 
 
2.4 Virtual versus Complementary Virtual Work 
 
The virtual work for an incompressible saturated soil is 
given by 
 
 

( )

( )

ˆ

0

T

T T T

A A S

T

A

p dA dA dS
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in which the strains are derived from the displacement 

gradients ( =ε Lu ) and the effective stresses are tied to 

strains (  =σ Dε ), with the strains tied to the displacement 

gradients.  The surface tractions are not necessarily in 
equilibrium with the stresses and local equilibrium is not 
necessarily preserved.   

On the other hand, the inherent assumptions for the 
modified complementary virtual work are that the stress 
field must satisfy local equilibrium (including body forces), 
the boundary tractions are in equilibrium with the stresses 
and the strains are directly related to the stresses and not 
to displacement gradients. A modified complementary 

potential energy ( c ) can be obtained from the total 

potential energy () via the relation, 
 
 

( ),c i ij j i ij j
A S

u dA u n dS   = − +         [8] 

 
 
in which the two integrals correspond to ‘integration-by-
parts’ and add up to zero. These integrals also prove to be 
useful for evaluating the surface integrals when dealing 
with triangular and quadrilateral elements as long as the 
approximating displacements satisfy the corresponding 
boundary variations.  

The modified complementary virtual work for a 
saturated incompressible body is given by 
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with = −  0 0
T

p gyσ being the particular solution of the 

equilibrium equation of the body force term. The body force 
and pressure terms enter Eq. (9) by recognizing that the 



 

total stress along the boundary S of an element is

pp= + +σ σ M σ . An examination of this equation reveals 

that displacement variations are only required along the 
boundary and that the equilibrating distributions of stress 
and pressure are required only within each element. This 
does not imply that stresses are continuous between 
elements. By applying integration by parts, it is possible to 
show that the body force terms of Eqs. (9) and (10) are the 
same, although in one case we have an area integral and 
in the other a contour integral.  
 
2.5  Mixed Hybrid Formulation 
 
Given that mixed formulations based on Eq. (7) are well 
established, we summarize only the mixed formulation 
based on Eq. (9). It is assumed that the effective stress 
varies linearly  =σ Pb and p is constant within A, and 

 = u Na  along the boundary S.  We convert Eq. (9) to  

 
 

  +  
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in which −= 
1T

V
dVH P D P , = 

T T
u

S
dSL P G N , 

= 
T T

p
S

dSL M G N , = 
T

g p
S

dSf N Gσ and =  ˆ

T

T
t

S
dSf N t .   

 
The global matrix equivalent of Eq. (10) is formed by 

taking into account inter-element compatibility and 
equilibrium, or by invoking the extensive thermodynamic 
property of energy.  
 
 

 
Figure 2: Gravity loading for rectangular element. 
 
 

It should be noted that Karchewski (2015) and 
Karchewski et al. (2016) include an additional gravity 
loading term that is associated with the area integral, 
shown in Figure 2. Referring to this figure, we observe for 
a simple rectangular element that gravity loading in the y-
direction results in forces in the x-direction, as well as 
couples that cancel. The corresponding horizontal forces 
are a function of Poisson’s ratio and the aspect ratio of the 

element.  For a uniform mesh such as used for Example 1, 
this term would not contribute to the global load vector, if 
gravity were to be included. 

For an incompressible solid,  is replaced by the 
deviatoric stress S, and the constitutive law is simplified to 

2G=S ε ; see, e.g., Malvern (1969).    We may also write 

=S Dε  and use engineering strain. The same 

approximations are adopted as for the saturated, 
incompressible soil.  

The difference between the exposition just presented 
for undrained soil response and that for an incompressible 
solid, lies mainly in the formation of the D-matrix which 
allows for a compressible elastic soil skeleton subject to an 
incompressibility constraint, and the interpretation of p. The 
pore pressure p now takes on the role of mean normal 
stress. An important reason for considering the virtual work 
expressions is that they apply to nonlinear problems.  
There are various possibilities for taking into account the 
nonlinearities when updating the stress or strain-
dependent properties. The one proposed here is to assume 
the nonlinear constitutive law for an element is determined 
by the stress/strain conditions at the geometric centroid, 
which represents an “average”.  For strain dependence of 

the constitutive law, we can also obtain average strains ε  

by performing contour integrals around an element, i.e., 
 
 

1 T

dS
A

= ε G N a     [11] 

 
 
that allows us to estimate average properties.  
 
 
3 NUMERICAL EXAMPLES 
 
Modern day finite element modeling generally involves 
relatively fine meshes when compared with those used in 
the early years.  The non-physical pressure distributions 
are however much more apparent with solutions based on 
coarse grids than are those obtained using finer 
discetization. Data processing techniques that have found 
their way into the commercial software tend to often hide 
any parasitic behaviour that may be present. 

Two plane strain examples are considered: a footing 
problem that demonstrates the prediction of mean normal 
stress (pore pressure) and shear stress under the footing; 
and the flow of the northeast slope of the Barnes Ice Cap 
(BIC) (Hooke et al. 1979). Given the plane strain 
assumption, the mean effective and shear stresses 
correspond to the center and radius of Mohr’s circle, 
respectively.  These represent stress invariants for plane 
strain problems. The sign convention for pressure is 
tension positive. Stresses are calculated at the geometric 
centroid of the hybrid element (MH-4), where the true 
average values are obtained.  For the assumed 
displacement elements, they are determined at the origin 
of the natural coordinate system. This location provides the 
most reasonable stresses for the D-4 element.  The letters 
M, D and H denote mixed, displacement and hybrid 



 

formulations with the number representing the number of 
nodes 
 
3.1 Frictionless Footing Subjected to Vertical Pressure 
 
We have an example of a 5 m wide footing that uniformly 
loads the top of a 5 m thick by 20 m wide soil deposit with 
a -8000 kPa pressure. Owing to symmetry only half the 

problem is analyzed with a 20 20 mesh. There is full fixity 
along the bottom and along the RHS vertical boundary, 
with rollers along the LHS boundary to accommodate the 
symmetry. The full fixity along the outside boundaries 
represents an extreme condition when a material response 
is incompressible. As indicated, pore pressures are 
constant in the HM elements, with piecewise linear 
interpolation of displacements along the boundary. The 
elastic modulus and Poisson’s ratio are 100,000 kPa and 
0.3, respectively. 

Figure 3 shows the ‘smoothened’ excess pore pressure 
distribution, as well as the ‘magnified’ deformed mesh. The 
scale is provided in the figure caption. For this example, it 
turns out that the least-squares smoothened pressure 
predictions by the HM-4 and DM-4 formulations were found 
to be very similar.  The mean effective stress increases 
were close to zero.  It must be understood that no increase 
in the mean effective stress developed due to the fluid 
being completely incompressible. This may be proven for 
an isotropic soil at the constitutive level. On the other hand, 
when considering the pore pressure changes that are 
predicted when using stress-path-dependent ‘pore 
pressure’ parameters to account for 2 or 3-D stress 
variations this may be unexpected.  We also observe that 
under the load, the soil surface moves vertically down with 
it rising along the free surface, which is what one should 
expect for an incompressible medium.  The deformations 
are shear dominated. 
   
 

 

 
 

Figure 3: Excess pore pressure distribution due to surface 
loading.  (Minimum = 0 kPa, Maximum = 150 kPa) 
 
 

Although not shown, there are some numerical issues 
that should be mentioned.  The mixed formulations did 
exhibit checkerboarding of predicted pressures. There 
were two main observations: as the number of elements 
increased, the errors became smaller; and selective 

integration appeared to mitigate the non-physical pressure 
modes but does not eliminate them entirely. This 
observation is consistent with the trend described by Bathe 
(1996), who provides a detailed discussion on spurious 
pressure modes in Chapter 4 of his textbook.  

Smoothening was found to be effective in recovering 
the physical pressure field.  It should be noted that the 8-
node isoparametric quadrilateral element with reduced 
integration, which is popular in geomechanics, was found 
to also have issues with non-physical pressure variations.   

Figure 4 illustrates the increase in shear as represented 
by the radius (t) of Mohr’s circle.   The colour coding is the 
same as that shown in Figure 3, with the respective 
minimum and maximum limits being presented in the figure 
caption.  Once again, the smoothened HM-4 and DM-4 
predictions were found to be very close.  As one might 
expect, the maximum shear which is responsible for the 
instantaneous 2-D surface settlements was maximum 
under the footing, but not immediately along the soil-footing 
interface.  The upward movement of the surface is 
attributed to the incompressibility constraint condition, not 
the changes in stress. 
 

 

 
 
Figure 4: Equivalent shear stress increase due to surface 
loading.  (Minimum = 0 kPa, Maximum = 50 kPa) 
 
 

This example demonstrates that the two mixed 
formulations (HM-4 and DM-4) provided similar predictions. 
These elements were found to be less susceptible to 
locking when compared to predictions by regular 
displacement elements with Poisson’s ratio approaching 
half.  Nevertheless, the mixed elements are not immune to 
spurious pressure variations.  In the example that follows, 
the emphasis is on the performance of the hybrid mixed 
formulation for the case of gravity-driven flow.  We also 
address the solution of stress/strain-rate dependent flow.  
 
3.2 Gravity Driven Flow 
 
3.2.1 Constitutive Description 
 
Restricting ourselves to incompressible, two-dimensional 
flow with pressure insensitive, isotropic material behaviour, 
the relation between deviatoric stress and strain rate takes 

the form 2=S εwith  being the viscosity and the dot 

above a symbol implying a time derivative. Although 
engineering strain rate is adopted in this paper, it should be 
noted that this form of constitutive law implies that



 

/ 2xy xy = . For incompressible problems the volumetric 

strain rate TM ε vanishes; thus, the deviatoric strain rate is 

the same as the total strain rate. 
For creep flow, Glen’s (1955) power law is most often 

adopted. It is convenient to write it as ( )
r

e e aA p = , 

which leads to the following relation for viscosity  
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
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where
3

2

T
e = S S and

3

2

T
e = ε ε are Dorn's definitions 

for the equivalent stress and equivalent strain rate, 
respectively, and pa is a reference pressure assumed to be 
100 kPa, with r and A being material properties that depend 
on temperature. For visco-plasticity Zienkiewicz and 
Godbole (1974) recommend the relation  
 
 

2

e

c
 


= +      [13] 

 
 

in which  is a reference viscosity and c represents the 

shear strength of the material. A limit must be placed on 

the viscosity since  →  as 0e → .   A reasonable limit 

is 2000  . 

The standard material properties adopted in this paper 
for the simulations of ice creep are unit weight γ = 8.952 
kN/m3, Poisson's ratio ν = 0.5 and the creep law exponent 
r = 3.  The solution procedure takes into account that the 
nonlinear creep law is based on the direct iteration method 

involving the general algorithm ( ) 1en n+ =K ε a F , in which 

K is the “stiffness” matrix, a contains the unknown 
velocities and pressures and n is an iteration counter.  
When carrying out the analyses, convergence was based 
on the root mean square error of the velocities being less 
than 0.0001. To ensure convergence the viscosity, 
assumed constant for an element, was expressed in terms 
of strain rate, not stress. 
 
3.2.2 Barnes Ice Cap, Baffin Island  
 

The Barnes Ice Cap (BIC) has been of interest to 
glaciologists for many years because parts of the ice mass 
have a history of becoming unstable, a phenomenon 
referred to as surging. Finite element simulations have 
been performed for this structure in the past; see, e.g., 
Hooke et al. (1978) and Stolle (1988). The purpose of the 
following simulations was to test the formulations on a 
problem that is of a considerably different scale than is 
usually encountered in engineering. It takes into account a 
nonlinear creep law with a varying creep coefficient A.  The 
geometry, boundary conditions, and structure of the FEM 
mesh of the northeast slope are shown in Figure 5, along 

with the measured horizontal surface velocities. The mesh 
that was used to generate the results shown herein was for 

a finer mesh (118  8). It should be noted that simulations 
were also performed with a 6-node velocity-pressure 
triangular element (DM-6), in which pressure was 
continuous between elements.  

Figure 6 provides the distribution of the A-parameter in 
the creep law as a function of the horizontal distance along 
the ice cap.  The distribution was obtained via calibration 
with the measured horizontal surface velocities.  Although 
no attempt was made to optimize the parameters, which 
depend on temperature, the calculated surface velocities 
are shown to provide the correct trend (see the top left side 
of Figure 5).  Preliminary analysis revealed that the 
average relative difference in the prediction of shear stress 
between HM-4 and DM-4 was 7 percent when comparing 
values element by element, with the corresponding 
difference for pressure being 1 percent.  As a result, the 
smoothened stress predictions were found to be very good.   

A series of simulations were also performed assuming 
power-law creep with constant coefficients. The predicted 
variations in pressure and maximum shear stress reflected 
by the contour plots tended to vary smoothly. Figure 7 
shows the smoothened pressure and shear stress 
distributions for the case where the coefficient varied with 
the distance along the glacier.   As might be expected, the 
pressure variation is fairly smooth.  On the other hand, the 
spatial distribution of shear does not appear to be as 
regular, being more sensitive to the flow law.  The reader 
should however keep in mind that the scales for the 
horizontal and vertical axes are different as shown in 
Figure 5.  More important for the present discussion is that 
the contours from the three formulations are virtually 
identical, particularly for the predictions stemming from the 
DM-4 and HM-4 elements. An observation of significance 

is that the xy shear contour of 40 kPa intersects the divide.  

This is not possible due to the boundary condition but is the 
result of the contour plotting algorithm. Nevertheless, all 
three formulations are shown to predict the same stress 
variations after smoothening. 
 
 

 
 
Figure 5: BIC example – (top) measured and predicted 
surface velocities (meters per annum), and (bottom) 
geometry of ice mass and representative mesh for 
quadrilateral elements. 
 



 

 
Our final comparison for this example deals with the 

magnitude of the total velocity for the three formulations.  
The contours for the three are shown in Figure 8.  Once 
again, the overlap of the three sets is excellent.  It should 
be noted that, had the creep law been uniform (implying a 
constant A-parameter), then the maximum would have 
occurred closer to the divide, i.e., in the vicinity of the 8 km 
location. 
 
 

 
Figure 6: Variation of A-parameter with respect to distance 
along the ice cap. 
 
 

 
 
 
Figure 7: Comparison of creep predictions by HM-4, DM-4 
and DM-6 models for (top) mean normal stress in kPa, 
(bottom) shear in kPa. The DM-6 prediction is denoted by 
dotted lines, and HM-4 and DM-4 by solid lines. 
 

 
 
Figure 8: Total velocity contours by HM-4, DM-4 and DM-6 
models. 

 
 
4 CONCLUDING REMARKS 
 
The authors have been involved in research dealing with 
the implementation of assumed stress polygonal elements, 
an attractive feature of these elements being that 
equilibrium is satisfied within each element.  A scouting 
expedition was carried out for this paper to investigate the 
performance of the 4-node mixed hybrid element for 
situations in which the deformations are incompressible, as 
well as for predictions involving nonlinear constitutive 
behaviour and gravity driven flow.  While nonlinear FEM is 
well established for regular displacement formulations, the 
literature regarding nonlinear analysis with assumed stress 
elements is relatively scarce.  It had originally been 
assumed that the hybrid element (HM-4) would perform 
better than the corresponding displacement element (DM-
4). 

An important finding is that the predictions from both 4-
node elements were almost identical, particularly after 
smoothening the stresses. The implementation of the 
hybrid element, where all stress components varied 
linearly, however, has the advantage of being able to better 

capture variations in shear stress xy  when compared to 

the bilinear displacement element, although the differences 
are often small when making comparisons of the average 
stresses in an element.  The 4-node, mixed assumed 
stress formulation is not capable of avoiding the 
'checkerboard syndrome', at least for the implementation 
that was investigated. This was not surprising given the 
origin of the “syndrome’. Nevertheless, the checker-
boarding was not a problem for the gravity-driven 
deformation phenomenon that was considered in this 
paper. With regard to gravity loading, although the integral 
equations to obtain the load vector are different, it can be 
shown that they provided the same load vector, at least for 
the low-order elements. 

Although the stress predictions are better when using 
the mixed hybrid (HM-4) element, the D-4 element with 
selective integration for the volumetric stiffness and DM-4 
mixed element were found to be easier to implement.  
Given the trend to adopt low order elements with fine 
discretization, the gains in improved stress prediction that 
have been reported for the hybrid elements when using 
coarser meshes are not realized after smoothening the 



 

predictions for plotting purposes.  This observation does 
not necessarily apply for analyzes based on unstructured 
meshes consisting of polygonal elements with an arbitrary 
number of nodes.  
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