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ABSTRACT 
There is a growing shift toward incorporating uncertainty through reliability-based approaches in the geotechnical industry. 
Typical frequentist approaches to statistics rely on large sample theory to quantify uncertainty. Bayesian approaches, on 
the other hand, can deal with uncertainties related to small sample sizes or limited knowledge. They can also incorporate 
many different types of information like engineering judgment and experience at similar sites. This makes it a natural fit to 
many geotechnical applications, including tailings dam design, where practitioners need to make design decisions based 
on a limited of number of samples. Hierarchical, or multi-level, Bayesian models have the additional benefit of providing a 
formal framework to incorporate related – but not identical – information. For example, information from other similar tailings 
facilities can still be useful even if it is not as directly relevant as data from the specific facility of interest.  
 
This paper presents an example case study showing how a Bayesian hierarchical model can be used to quantify 
uncertainty and define effective friction angle estimates to use in stability assessments. In this example, consolidated 
undrained triaxial compression tests are available from four different facilities spread across one mine site. All the available 
data is used to quantify uncertainty across the site, within each facility, and when making predictions for a fifth facility where 
no data is available. Upon receiving new data for the fifth facility, the predictions are updated. While the presented case 
study provides an example for estimating effective friction angles, the same basic theory and model framework can easily 
be extended to any other parameter of interest. 
 
RÉSUMÉ 
 
 
 
1 INTRODUCTION 
 
Selecting appropriate input parameter assumptions is a 
key step in any geotechnical design. Many practitioners 
apply a deterministic approach using conservative values 
to estimate a factor of safety (FoS) and then assess 
whether that FoS meets a defined threshold. Recently, 
there has been a growing shift in the industry to apply 
reliability-based approaches to estimate probabilities of 
failure. In either case, there is a need to incorporate 
uncertainty and apply engineering judgement to select 
appropriate parameter values. 

Traditional frequentist statistics are applied in many 
other fields to quantify uncertainty and define distributions 
of parameters. These methods rely on large sample theory 
and assume there are enough samples to represent the 
true population. Geotechnical applications often deal with 
small sample sizes. Therefore, practitioners also need to 
rely on other sources of often subjective information that 
could include experience at similar sites or projects.  

Bayesian approaches offer an advantage over 
frequentist statistics in that they provide a formal basis for 
incorporating multiple types of information (e.g., observed 
drilling or test data and engineering judgement), can deal 
with small sample sizes, and allow updating of parameters 
as new information becomes available. A special type of 
Bayesian models, called hierarchical or multi-level, have 
the additional benefit of providing a formal framework to 
incorporate related but not identical information. For 
example, available measurements of a parameter from 
multiple projects or sites should be incorporated as related 
information but should not carry the same importance as 

measurements from within the specific site of interest. For 
these reasons, Bayesian approaches are highly suitable to 
many geotechnical applications. 

 
 

2 OVERVIEW OF BAYESIAN METHODOLOGY 
 
2.1 General Bayesian Theory 
 
In any statistical framework, there is typically a parameter 
of interest to estimate and available observations (data). In 
a Bayesian context, the parameter is linked to data using 
the general form of Bayes equation shown as Equation 1: 
 
P(θ|D)=  [P(D│θ)P(θ)] / P(D)    [1] 
 

where θ is the parameter of interest and D is the 
observed data. 

The term P(θ), called the prior, represents our 
understanding of the parameter before seeing any data. 
This is where engineering judgement can be incorporated 
to represent knowledge about the parameter. The term 
P(D│θ), called the likelihood, and represents the 
probability of observing the data if prior understanding was 
correct. The result, P(θ|D), is the posterior and represents 
the updated probability distribution of the parameter of 
interest given the observed data. The denominator, P(D), 
is the unconditioned probability of the data. Since it does 
not depend on the parameter of interest, θ, it is a constant 
that is simply used as a normalization factor. Therefore, 
Equation 1 can also be written as: 

 



 

P(θ|D) ∝ P(D|θ) P(θ)    [2a] 
 
or 
 

posterior ∝ likelihood x prior   [2b] 
 
 
Solving the Bayesian formula can be very difficult, 

especially as the number of parameters being evaluated 
increases and when applying prior assumptions or 
likelihoods that do not necessarily easily combine with 
closed form solutions. Therefore, simulation methods such 
as Markov Chain Monte Carlo (MCMC) are typically used 
to approximate the posterior distribution. A more 
comprehensive description of MCMC methods and 
associated sampling algorithms is provided in Hastings 
(1970) and Metropolis (1953). 

 
2.2 Bayesian Hierarchical Models 
 

The framework of any Bayesian model is dependent on 
how data is considered. One approach treats all data the 
same, pooling it to estimate a single overall parameter as 
shown schematically in Figure 1a. The other approach 
treats all data independently to estimate values for each 
location as shown in Figure 1b. Reality is likely somewhere 
in between. Data may not be identical for every location or 
may not be entirely independent of data from another 
location. This is where a multilevel or hierarchical model is 
useful.  In a hierarchical framework, there are multiple 
levels of parameters of interest that we are trying to 
estimate. In this case, the top level is an overall parameter 
that describes all tailings materials; however, we recognize 
there is also variability between locations (Figure 1c). 
Therefore, we say each location has its own value that is 
related to the overall parameter for all locations. As we run 
the model, the overall parameter acts as a prior for the 
parameter at each location. However, since the overall 
parameter is also unknown, it also needs a prior and is fit 
based on the values from all other locations. In other 
words, the fitting process is not sequential. Instead, we are 
fitting the overall and individual parameters 
simultaneously. 

 

 
Figure 1. Comparison of Bayesian model frameworks 

This approach has few key benefits including that it 
provides a formal basis for 

 showing that predictions for locations with no 
available data have more variance than predictions 
for locations with data, 

 borrowing information from locations that are data-
rich to constrain locations that are data-poor, and  

 accounting for sources of variability that may be 
important, even if the cause is not known (i.e., the 
variability between dams could be due to a changes 
in deposition, mineralogical characteristics of the 
mined ore, proportions of fines, etc.; however, we 
do not need to determine the exact cause to 
recognize and account for variability between 
locations). 

 
Table 1 shows a simple comparison of the three main 

model frameworks. In the hierarchical model, the cross-
location variability is captured in the first level and the 
variability within locations is captured in the second level. 

 
Table 1. Comparison of Bayesian model frameworks 

 Pooled / 
common 

Separate / 
Independent 

Hierarchical 

Key idea 

Fit one 
overall value 
using all 
observations 

Fit unique 
value for 
each location 

Fit overall value 
and individual 
values for each 
location 
simultaneously  

Independence 
of 
observations 

All 
observations 
are identical 

Observations 
from each 
location are 
independent 
of other 
locations 

Observations 
between 
locations are 
related 

Making 
predictions at 
a new1 site 

Same 
predictions 
for all 
locations2 

Not possible3 

Uses overall 
value for 
predictions at 
new locations 

Variability 

overall 
variability in 
all 
observations 

variability 
within 
locations 

variability 
across and 
within 
locations  

1A ”new” location refers to a facility where there is no available 
information. 
2The same value is predicted regardless of location. 
3This is because there is no statistical basis for making a prediction 
at a new location if observations at any one location are assumed 
to be completely independent from observations at other sites 

 
 

3 CASE STUDY 
 
3.1 Background 
 
The case study presented in this work is based on a real 
design project. Site-specific details have been omitted due 
to confidentiality restrictions; however, real laboratory 
testing results were used in all the analyses. The problem 
statement is also simplified for brevity. 

The TSFs at the site were all built using a similar 
construction procedure. Tailings were initially deposited 
behind a compacted earth fill dam that was then raised in 



 

an upstream fashion (i.e., each dam raise was built on top 
of the previous raise and was partially founded on the 
newly deposited tailings). The resulting downstream slope 
of these raises is, approximately, 1.75H: 1.0 V. An example 
simplified cross section is shown in Figure 2. 

 

 
Figure 2. Example typical cross-section 
 
 

Preliminary stability analyses indicated that none of the 
TSFs meet the required minimum factor of safety (FoS) of 
1.5 for long-term conditions and static loads as 
recommended by current best practice guidance such as 
CDA (2013, 2019). Therefore, remediation efforts such as 
buttressing are likely needed for all TSFs.  

The goal of the analysis is to make decisions on which 
TSF(s) to prioritize for remediation considering estimated 
deterministic FoS and probabilities of failure (PoF) while 
also accounting for the varying vulnerability of the different 
facilities. 

 
3.2 Available Information and Approach 
FoS and PoF estimates are calculated using a simplified 
infinite slope limit equilibrium analysis. Since there is no 
permanent phreatic level within the tailings, the stability is 
therefore solely controlled by the effective friction angle of 
the stored tailings at the contact between the stored tailings 
and the upstream dam shell. 

Several site investigations have been completed, 
including performing consolidated undrained triaxial tests 
on tailings samples from the different TSFs.  

The case study analysis is completed in two parts. In 
Part 1, laboratory strength tests are available for only four 
of the five TSFs. In Part 2, laboratory strength tests for 
TSF 4 became available, and the analysis is updated using 
this new information.  

For Part 2, there are 36 consolidated undrained triaxial 
test results available at the site, with almost half of the tests 
coming from TSF 5, as summarized in Table 2. Each 
triaxial test result corresponds to one consolidated 
undrained triaxial compression at a constant confining 
stress (i.e., one observation).  

 
Table 2. Available triaxial stage test results 

TSF 
Number of Observations 

Part 1 Part 2 

1 3 3 
2 3 3 

3 9 9 

4 - 6 
5 15 15 

 
 

4 METHODOLOGY 
 
Models for all three main types of Bayesian frameworks 
(pooled, separate, and hierarchical) were developed for 
comparative purposes. For all models, the strength of the 
tailings is characterized by its effective friction angle (ϕ) at 
the critical state. Therefore, the parameters of interest are 
the effective friction angles for each dam, which are 
determined based on the results of consolidated undrained 
triaxial compression tests (the observations). 

For each model, the principal stresses at failure for 
each test specimen are inputted as the data (or evidence) 
and posterior samples of the parameter of interest, ϕ, are 
collected through Markov Chain Monte Carlo (MCMC) 
simulation methods. If enough samples are collected and 
the model is a well-specified model, values of ϕ will 
converge toward the range of values that best describe the 
data while also factoring in the prior assumptions.  

 
4.1 Modelling Tools and Diagnostics 
 
The Python library PyStan (Carpenter et al., 2017) was 
used to perform Hamiltonian Monte Carlo with No-U-Turn 
Sampling MCMC method (Hoffman and Gelman, 2014). 
Four chains were run for every model and the Ȓ diagnostic 
was used to assess model performance. Ȓ compares 
between-chain and within-chain variances (see Gelman 
and Rubin (1992) for details). High values indicate non-
convergence and therefore a target Ȓ value of 1.0 ±0.05 
was used to verify model convergence and stability.  
 
4.2 Prior Selection 
 
The first step in any Bayesian framework is to define the 
prior assumptions before seeing any data. In this case, we 
need to define priors for the effective friction angle and 
uncertainty (standard deviation). 

The prior distribution has been defined in terms of the 
tangent of the friction angle, tan(ϕ), since stability (or FoS) 
is linearly related to tan(ϕ). Based on experience, we 
expect tailings effective friction angles to be restricted 
between 20° and 45°. We capture these assumptions by 
assuming tan(ϕ) is normally distributed with tan(20°) and 
tan(45°) representing the lower and upper bounds of a 
99.7% confidence interval. This results in an assumed prior 
mean of 0.667 (or about 33.7°) and a standard deviation of 
0.106 representing six standard deviations between 
tan(20°) and tan(45°). 

A prior assumption also needs to be defined for the 
standard deviation or variance parameter. The half-cauchy 
distribution was selected as a weakly informative prior, with 
a location parameter equal to 0.106. Gelman (2006) and 
Polson and Scott (2012) describe the benefits of using the 
half-cauchy distribution for variance parameters in 
hierarchical models. 

An alternative approach could have chosen completely 
uninformative uniform priors bounding the friction angle to 
be between 0° and 90°, and the standard deviation to be 
between 0 and infinity. Instead, both priors apply weakly 
informative assumptions to incorporate some judgement 
while still being open-ended enough to not overly bias or 
influence the results.  



 

 
4.3 Pooled Model 
 
For the pooled model, we assume there is only one 
effective friction angle, ϕ, that can be estimated from all our 
observed principal stresses at failure at all locations. We 
also know there is some inherent variability or error in the 
relationship linking tan(ϕ) to our measurements.  

This assumption means we have two parameters that 
are unknown and need priors, tan(ϕ), and the standard 
deviation, σ. The governing prior and likelihood equations 
are as follows: 

Priors: 
 
μtan(ϕ) ~�(0.667, 0.106)     [3] 
 
σtan(ϕ) ~Half-Cauchy(0, 0.106)    [4] 
 

Likelihood: 
 
y ~�(μtan(ϕ), σtan(ϕ))     [5] 

 
 
Where y is the measured tan(ϕ) for each principal 

stress at failure. 
One posterior distribution is generated, representing 

the overall tan(ϕ) for all TSFs. 
 

4.4 Separate Model 
 
For the separate model, we assume there is a unique 
effective friction angle, ϕ, for each location that we 
estimated using only the information available at that 
location and ignoring information from other locations.  

Like the pooled model, we know there is some inherent 
variability or error in the relationship linking tan(ϕ) to our 
measurements and represent it using the same normal 
distribution assumption. However, in this case, we also 
assume that the standard deviation, σ, is unique to each 
TSF.  

Priors: 
 
μtan(ϕ), TSF ~�(0.667,0.106)     [6] 
 
σtan(ϕ), TSF ~Half-Cauchy(0,0.106)    [7] 
 

Likelihood: 
 
yTSF ~�(μtan(ϕ), TSF, σtan(ϕ, TSF))    [8] 

 
 
Multiple posterior distributions are generated, one for 

each TSF. 
 

4.5 Hierarchical Model 
 
The hierarchical model is similar to the separate model in 
that we assume there is a unique tan(ϕ) for each TSF; 
however, there are a few key differences. First, we 
introduce an extra level to our model by assuming each 
locations’ tan(ϕ) is related to one common overall effective 
friction angle for all TSFs. We also assume the standard 

deviation, σ, in the relationship linking tan(ϕ) estimates to 
our measurements is shared across all TSFs. All the 
available information for all TSFs is used as evidence for 
estimating overall values. Each location’s tan(ϕ) uses 
information from its own location observations as evidence, 
but it also uses the overall mean and standard deviation as 
a prior. This is how information gets shared across TSFs. 
As evidence increases, it gets weighted higher; however, 
when there is little evidence, the prior information from all 
other dams has a stronger contribution.  

 
Priors: 

 
μtan(ϕ) ~�(0.667,0.106)     [9] 
 
σtan(ϕ) ~Half-Cauchy(0,0.106)   [10] 
 
μtan(ϕ), TSF ~�(μtan(ϕ), σtan(ϕ))    [11] 
 
σtan(ϕ), TSF ~Half-Cauchy(0,0.106)   [12] 
 

Likelihood: 
 
yTSF ~�(μtan(ϕ), TSF, σtan(ϕ, TSF))   [13] 

 
 
This model includes one extra posterior distribution 

compared to the separate model since one unique tan(ϕ) 
is generated for each location, as well as one for 
representing the overall tan(ϕ) for all the TSFs. This overall 
tan(ϕ) can be used to make out-of-sample predictions at a 
new TSF. 

 
4.6 Factor of Safety and Probability of Failure 

Calculations 
 
The 33rd percentile value of tan(ϕ) generated from the 
posterior distribution was used as the key input for 
deterministic factor of safety (FoS) calculations. As 
previously mentioned, FoS was calculated using infinite 
slope limit equilibrium analysis. The PoF is calculated as 
follows: 
 
PoF=P[FoS≤1]=P[tan(ϕ)≤tan(β)]               [14a] 
 
    = Φ[(tan(β)-μtan(ϕ))/σtan(ϕ)]               [14b] 
 
 

where tan(β) is the slope of the downstream dam shell, 
Φ is the is the standard normal cumulative distribution, and 
μtan(ϕ) and σtan(ϕ) are the mean and standard deviation 
values for tan(ϕ) determined from the Bayesian modelling. 

 
5 RESULTS 
 
All results in this section show only one value for the pooled 
models, and do not include any values for TSF 4 in the 
Part 1 separate models. This is because pooled models 
only calculate one value that applies to all TSFs, and 
separate models do not allow out-of-sample predictions for 
TSFs with no data (Part 1 does not include any tests at 
TSF 4). 



 

Table 3 shows the mean and standard deviation values 
for tan(ϕ) determined from the Bayesian modelling.  

 
Table 3. Posterior tan(ϕ) results 

Statistical 
Model Part 

tan(ϕ), mean ± standard deviation 

TSF 1 TSF 2 TSF 3 TSF 4 TSF 5 

Pooled 
1 0.708 ± 0.133 

2 0.704 ± 0.121 

Separate 
1 0.693 

±0.023 
0.799 
±0.051 

0.656 
±0.042 - 0.712 

±0.039 

2 0.693 
±0.022 

0.800 
±0.050 

0.654 
±0.042 

0.689 
±0.035 

0.712 
±0.037 

Hierarchical 
1 0.696 

±0.019 
0.742 
±0.055 

0.684 
±0.032 

0.705 
±0.060 

0.712 
±0.029 

2 0.698 
±0.018 

0.734 
±0.048 

0.687 
±0.030 

0.698 
±.024 

0.709 
±0.028 

 

Table 4 shows the resulting effective friction angle ϕ 
values and confidence intervals. Note that while tan(ϕ) 
results follow an approximate normal distribution 
characterized by a mean and standard deviation, the 
effective friction angle ϕ does not, since it is a non-linear 
transformation of tan(ϕ). 

Figure 3 shows the same information as Table 4 and 
includes the equivalent 33rd percentile value. 

Table 6 shows the calculated FoS and PoF results. 
 

6 DISCUSSION 
 
6.1 Differences Between Model Frameworks 
 
Figure 4 shows the posterior distributions of the estimated 
effective friction angles for TSF 4. The top plot shows the 
results for Part 1, before any tests were available at TSF 4, 
and the bottom plot shows the results after incorporating 
TSF-specific tests. 

 
 
Table 4. Friction angle (ϕ) results and confidence intervals 

Statistical 
Model Part 

Friction angle, mean (95% confidence interval) 

TSF 1 TSF 2 TSF 3 TSF 4 TSF 5 

Pooled 
1 35.30 (45.24 - 25.35) 

2 35.15 (43.73 - 25.87) 

Separate 
1 34.72  

(36.69 - 32.99) 
38.55  

(41.66 - 34.78) 
33.27  

(36.4 - 29.66) 
- 35.47  

(38.21 - 32.62) 

2 34.72  
(36.38 - 32.89) 

38.7  
(41.65 - 35.14) 

33.18  
(36.43 - 29.79) 

34.57  
(37.12 - 31.83) 

35.45  
(38.42 - 32.55) 

Hierarchical 
1 34.86  

(36.36 - 33.49) 
36.58  

(40.41 - 33.55) 
34.36  

(37.08 - 31.95) 
35.16  

(39.92 - 30.75) 
35.32  

(37.67 - 33.23) 

2 34.90  
(36.31 - 33.57) 

36.27  
(39.80 - 33.3) 

34.49  
(36.72 - 31.90) 

34.90  
(36.64 - 32.93) 

35.33  
(37.60 - 33.31) 

 
 

 
Figure 3. Friction angle results and confidence intervals 



 

Table 5. FoS and PoF results 

Statistical 
Model Part 

FoS (PoF) 

TSF 1 TSF 2 TSF 3 TSF 4 TSF 5 

Pooled 
1 1.14 (1.52E-01) 

2 1.14 (1.37E-01) 

Separate 
1 1.20 (6.26E-08) 1.36 (4.06E-06) 1.12 (2.20E-02) - 1.22 (7.26E-05) 
2 1.20 (1.64E-08) 1.36 (2.42E-06) 1.11 (2.47E-02) 1.18 (3.91E-04) 1.22 (1.56E-04) 

Hierarchical 
1 1.20 (2.76E-11) 1.26 (9.63E-04) 1.17 (2.18E-04) 1.19 (1.30E-02) 1.22 (1.05E-06) 

2 1.21 (1.02E-12) 1.25 (3.53E-04) 1.18 (5.85E-05) 1.20 (6.68E-08) 1.22 (4.48E-07) 

 
 

 
Figure 4. Posterior distributions of friction angles, ϕ, for 
TSF 4 

 
 
The pooled model results (shown in orange in Figure 4) 

have the largest variance and uncertainty. As shown in 
Figure 3, the predictions are also identical for every dam 
and centered around the average of all the available data 
across all dams. Comparing Part 1 and Part 2, adding the 
new Dam 4 information has a very minor impact of slightly 
reducing uncertainty, but the results are otherwise 
relatively insensitive to new information. 

There are no separate model results (shown in red in 
Figure 4) available for TSF 4 in Part 1 since the framework 
does not have a mechanism to make predictions for TSFs 
with no information. In Part 2, we see that TSF 4 results are 
slightly lower compared to the pooled models that use all 
the data. 

The hierarchical model results (shown in blue in 
Figure 4) have the lowest variance and uncertainty. In 
Part 2, we also see the hierarchical model mean lies in 
between the means of the pooled and separate models. 
This is a common characteristic of hierarchical models and 
is generally referred to as “shrinkage towards the mean”. 
Both the reduced variance and shrinkage effects are a 
result of the model’s ability to incorporate all available 
information while weighting TSF-specific information as 
more relevant. The hierarchical model also has much lower 
uncertainty compared to the pooled model in Part 1. This 
is because the pooled lumps all the data together and looks 
at the overall variance. The decreased variance in the 

hierarchical model is due to the data being grouped by TSF 
and accounting for both within-TSF and between-TSF 
variances. 

Hierarchical models have clear benefits of 
incorporating all available information, reducing 
uncertainty, and allowing relative comparisons between 
TSFs when compared to the other model frameworks. For 
these reasons, the hierarchical model is adopted the 
preferred method and only these results will be presented 
in subsequent sections. 

 
6.2 Factor of Safety Versus Probability of Failure 
 
Figure 5 shows the FoS results for all dams for Parts 1 and 
2. There are only very minor differences between Part 1 
and 2 since the overall means do not change very much. 
Clearly none of the dams meet the minimum target FoS of 
1.5.  
 

 
Figure 5. Calculated factor of safety 
 
 

Looking at this information alone makes it very difficult 
to make decisions on which TSF(s) need to be prioritized 
for remediation. Deterministic FoS values do not include 
any consideration of uncertainty and the fact that different 
TSFs have varying levels of information.  

PoF estimates, on the other hand, do incorporate 
uncertainty and are better suited to performing relative 
comparisons and determining prioritizations. Figure 6 
shows the PoF results for Parts 1 and 2. PoFs decrease in 
Part 2 compared to Part 1 for all TSFs due to new 
information being available. For most TSFs, the change is 
minor, but at TSF 4 the difference is significant since it went 
from having no information in Part 1 to having site specific 
information in Part 2. This results in major changes in the 
overall patterns: 



 

 In Part 1, TSF 4 has the highest PoF, but this is 
mainly due to it having the most uncertainty since 
no TSF-specific information is available.  

 In Part 2, we add information for TSF 4 and then 
see the PoF drop multiple orders of magnitude 
below TSF 2 and 3 and comparable to TSF 5. 
 

 
Figure 6. Calculated probability of failure 
 
 

Revisiting Figure 4 and comparing the TSF 4 results for 
Part 1 and 2, shows this reduction in PoF is not due to a 
change in our best estimate of the mean. (We see the 
mean reduces slightly or gets worse.) Instead, it is due to 
the large reduction in uncertainty as a result of having dam-
specific information. This aligns with what we would expect 
using our engineering judgement and helps highlight the 
value of getting more information. 
 
6.3 Implications on Engineering Decisions 
 
The key question is how to use all this information to make 
engineering decisions on which TSF(s) to prioritize for 
stabilization. If one only considers deterministic FoS 
estimates, it is very difficult to make any decision because 
all TSFs have similar values. If forced to decide, one might 
choose to prioritize TSF 3 because it has the lowest FoS 
value. If we only looked at PoF estimates, TSF 2 and 3 
have the lowest values and might both be selected for 
priority stabilization. 

However, if we also inspect the overall results (Figure 
7), we see TSF 2 has higher uncertainties compared to 
other TSFs. This is because the limited available test 
results at TSF 2 plot significantly higher than the averages 
at other TSFs. This suggests there could be value in 
performing additional tests to confirm whether these higher 
strengths are true and potentially narrow the uncertainty.  

Therefore, the recommended approach could include 
stabilizing TSF 3 as an immediate priority and conducting 
additional tests at TSF 2 before deciding on the next TSF 
to stabilize. 

 
7 SUMMARY AND CONCLUSIONS 
 

Bayesian approaches offer many advantages and are 
a natural fit to many geotechnical applications. This case 
study provides one example comparing three types of 
Bayesian modelling frameworks to define and quantify the 
uncertainty of geotechnical parameters to use in stability 
analyses for TSFs. Ultimately, the results were used to 
prioritize remediation efforts. 

 
Figure 7. Posterior distributions of Part 2 hierarchical model 
friction angles, ϕ, for all TSFs  
 
 

The key findings were as follows: 
 Bayesian approaches offer an advantage over 

frequentist statistics in that they provide a formal 
basis for incorporating multiple types of information 
such as observed drilling or test data and 
engineering judgement and can deal with small 
sample sizes. In this case, available test data 
included consolidated undrained triaxial 
compression tests from multiple TSFs and 
judgement was incorporated through the 
assignment of priors representing expected ranges 
of effective friction angles. 

 Hierarchical models have clear benefits of 
incorporating all available information, reducing 
uncertainty, and allowing relative comparisons 
between dams when compared to other Bayesian 
model frameworks. 

 Updating the analysis after receiving additional test 
results highlighted the value of receiving new 
information. 

 Insights from the full results can be used to make 
practical engineering recommendations. In this 
case, the recommendation included prioritizing one 
TSF for immediate remediation and selecting 
another to be investigated further. 

 
While the case study presented in this paper focused 

on one practical application of estimating effective friction 
angles, the same basic theory and model framework can 
easily be extended to any other geotechnical parameter of 
interest. 
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