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ABSTRACT 
Backward erosion piping, one of the initiating mechanisms of internal erosion and piping which classically occurs at the 
contact of dam foundation and upper cohesive layer, is responsible for lots of embankment dam incidents and failures. 
Sellmeijer was the first to develop a 2D theoretical criterion for the progression of the pipe considering its hydraulic 
properties. It was later improved by means of experimental data and statistical tools evaluating the influence of each 
incorporated parameters on the critical gradient and adding more soil properties into the criterion. However, further analysis 
on the experimental data reveals that the regression model from which the improved criterion was derived suffers from 
overfitting. In this article, considering multiple regression analysis concepts, the shortcoming with the improved criterion is 
highlighted. The data is re-analyzed, and more robust equation is presented.  
 
RÉSUMÉ 
Érosion régressive de conduit, l'un des mécanismes initiateurs de l'érosion interne de conduit qui se produit classiquement 
au contact de la fondation du barrage et de la couche cohésive supérieure, est responsable de nombreux incidents et 
ruptures de barrages en remblai. Sellmeijer a été le premier à développer un critère théorique 2D pour la progression de 
la conduite en tenant compte de ses propriétés hydrauliques. Il a ensuite été amélioré au moyen de données 
expérimentales et d'outils statistiques évaluant l'influence de chaque paramètre incorporé sur le gradient critique et 
ajoutant plus de propriétés du sol dans le critère. Cependant, une analyse plus approfondie des données expérimentales 
révèle que le modèle de régression à partir duquel le critère amélioré a été dérivé souffre de surajustement. Dans cet 
article, compte tenu des concepts d'analyse de régression multiple, la lacune du critère amélioré est mise en évidence. 
Les données sont réanalysées et une équation plus robuste est présentée. 
 
 
 
1 INTRODUCTION   
 
Internal erosion and piping are among the most important 
causes of earthfill dam incidents and failures. It occurs 
when soil particles within an embankment dam or its 
foundation are carried downstream by seepage flow 
leading to a continuous pipe from upstream to downstream 
side of an embankment (ICOLD 2015).  

One of the initiating mechanisms of internal erosion is 
backward erosion piping (BEP) which generally occurs at 
the interface of either a dam body and its foundation or a 
cohesive layer overlaid on a non-cohesive layer in 
foundation. It is initiated at the downstream toe nearby an 
existing defect and will progress toward upstream under 
the roof of cohesive soil if the critical condition is met 
(Figure 1).  

By taking into account the three main area of flow in the 
foundation medium, flow in the progressing pipe and 
equilibrium of grains at pipe bed, Sellmeijer (1988) 
proposed a theoretical criterion to determine the critical 
gradient across the structure required for progression of 
the pipe. The model was later improved based on a vast 
series of experimental and field tests exploiting multiple 
regression tools (Sellmeijer et al. 2011).   

From statistical point of view, including variables with 
small weights in a regression model could lead to 
overfitting issues. This is the case observed in Sellmeijer’s 
improved criterion which triggered the need to revisit this 
formula. The objective of this research is to propose an 
improved criterion. This will be done by multiple regression 
re-analysis of the data provided by Sellmeijer et al. (2011).   

 
Figure 1. Schematic illustration of backward erosion piping 
 
 
2 SELLMEIJER’S IMPROVED CRITERION 
 
Sellmeijer’s initial model was developed for a flow toward 
a pipe in an infinitly deep aquifer which later was modified 
to a finite layer. The model was implemented in MSEEP, a 
numerical piping program, so that backward erosion for 
more complex geometries could have been analyzed. By 
performing thousands of piping calculations in MSEEP and 
curve fitting of numerical outcomes, the design criterion of 
Equation 1 was proposed. In Eq. 1, H𝑐 is critical head 

difference, FR is resistance factor, FS is scale factor, FG is 

geometry factor, η is coefficient of White, θ is White’s 
bedding angle, γp

′  is submerged unit weight of particles, γw 

is unit weight of water, d is particle diameter, K is intrinsic 

permeability, L is erosion length and D is the height of sand 
layer.  

To assess the effect of sand characteristics on the 
critical gradient and to validate the formula of Sellmeijer 



(Eq. 1), a series of small-, medium-, and full-scale tests of 
BEP were conducted as a part of a research program 
called Strength and Loading of Flood Defence Structures 
(SBW). Test procedure, material properties, observations 
and the outcomes were collected and analysed in Knoeff 
et al. (2009), Van Beek et al. (2011), and Sellmeijer et al. 
(2011).  
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Figure 2 shows the 10×30×50 cm3 small scale test 
setup (erosion length of 34 cm) that was used in this 
project. For a compacted soil in the setup with specified soil 
properties, the overall head difference is increased 
gradually until critical gradient is obtained by which the 
progressing pipe reaches upstream without any stop. 

Knoeff et al. (2009) demonstrated statistically the 
influence of different soil properties including relative 
density (RD), conductivity (k), soil grain size (d70), 
uniformity (Cu), and soil angularity (KAS) on the critical 

hydraulic gradient (
Hc

L
) over different scales that the tests 

were performed. The final conclusion was based only on 
the results of statistical analysis for small-scale (47 tests) 
as not sufficient number of tests were carried out for 
medium-scale (7 tests).  

Based on 38 sets of tests multivariate regression 
analysis with normalized variables was carried out. From 
the 47 tests, 5 tests in which another type of erosion 
(forward erosion) than the classical backward erosion was 
observed, as well as 2 more tests that were outliers and 
was thought might distort the direction of results, were put 
out of the analysis. The weights of each of 5 soil properties 
were calculated as were indicated in Equation 2. The 
properties subscripted with “m” in Eq.2 represents the 
mean value of the same properties which were 
summarized in Table 1. 

The goodness of the regression model was 
demonstrated by the small distances of data to the 
diagonal line in the plot of predicted critical gradient versus 
corresponding experimentally measured critical gradients. 
Another sign of its goodness was the reduced amount of 
error for this plot compared to the same plot calculated by 
Sellmeijer’s original criterion (Knoeff et al. 2009).  

To assess the influence of each soil property on the 
measured critical gradient, Knoeff et al. (2009) tried to 
remove one variable each time and perform the regression 
analysis again in order to observe its effect on the weights 
of other variables. It was realized that the most influential 
variables were relative density, conductivity, and soil grain 
size. As a result, it was recommended not to include the 
influences of uniformity and angularity in the calculation 
rule. Nevertheless, Sellmeijer et al. (2011) incorporated the 
influences of all variables in the improved criterion that is 
shown in Equation 3. 
 

Figure 2. Schematic illustration of small-scale test setup 
(Van Beek et al. 2011) 
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Table 1. Summary of the properties of the 38 tested soils 
(Sellmeijer et al. 2011) 

 

Soil properties  Minimum Maximum Mean 

RD (%) 50 100 72.47 

k × 10−3 (
𝑚

𝑠
) 0.027 0.372 0.102 

d70 (μm) 150 430 207.92 

Cu 1.3 2.6 1.81 

KAS 35 70 49.76 

 
 

Hc

L
= FRFSFG

{
 
 

 
 FR = η

γP
′

γW
tanθ(

RD

RDm
)0.35(

Cu

Cu m
)0.13(

KAS

KASm
)−0.02

FS =
d70

√K L
3 (

d70 m 

d70
)0.6                                                   

FG = 0.91(
D

L
)

0.28

(
D
L)
2.8

−1

+0.04

                                           

 

[3] 
 
3 REGRESSION METHOD  
 
Regression analysis is a statistical technique for modeling 
and investigating the relationship between two or more 
variables (Hines et al. 2003). Regression Equation 4 shows 

the relation between dependent variable, y, and 

independent variables, xi and is called multiple linear 
regression model. A regression coefficient (βi) represents 
the amount of change in dependent variable according to 
a unit change in the corresponding independent variable 
while keeping other independent variables constant. ε, is 
the error term which indicates the inefficiency of the model 
to fit the observation data. Regression equation can be 
expressed whether in a format as Equation 4, which 
proposes regression coefficients, or in a logarithmic 
domain which returns weights (Eq. 5). In order to obtain 
weights, multiple regression model must be generated 
based on the natural logarithm of each variable. Thereafter, 
the calculated unknown parameters are considered 
regression weights, which are usually determined by 
means of least squares method. 
 
 



 

y = β0 + β1x1 + β2x2+. . . +βixi + ε                                      [4] 
 
 

y = expβ0 × x1
β1 × x2

β2 ×…× xk
βk × ε                                             [5] 

 
 

It is worth noting that adding more independent 
variables to the model could result in error reduction and 
obtaining better fit line, though, it could end up overfitting, 
and prediction problem for new observation data. 
Therefore, it is always intended to build a model with the 
fewest possible number of independent variables.  

To assure that a regression model exists between a 
specified number of independent and dependent variables, 
the results must be statistically significant. The significancy 
of a model is investigated by “P-value” which is the 
measure of explained variation to unexplained variation by 
a regression. P-value of a significant regression must be 
greater than a determined confidence level, which is 
conventionally considered 95 % and it can be increased to 
99.9 % (for more details, readers are referred to Hines et 
al. 2003).  

Also, having two independent variables in a regression 
model that are highly correlated could result in poor 
determination of actual effect of each independent 
variables on the results which is called multicollinearity. 
Although it does not affect overall fitting process, it could 
make misleading prediction as the correct amount of 
contribution of each intercorrelated variables are not 
determined. In statistical analysis, a high “VIF” (variance 
inflation factor), a considerable difference between  

Radjusted
2  and RPrediction

2 , and high intercorrelation between 

independent variables could indicate existence of 
multicollinearity in the regression model. VIF demonstrates 
how much of the variance explained by an independent 
variable is captured by other existing independent 

variables in the regression model. Radjusted
2  is the adjusted 

version of R2 which takes into account the number of 
independent variables incorporated in the model and 

RPrediction
2  indicates how well the model can predict the new 

observation data. 
Finally, the variance of errors of a model must be 

homogenously distributed. A non-homogenous model is 
not able to capture all the information in observation data 
by its independent variables which results in a non-random 
pattern in the residual errors of the model. 

There is no unique statistical procedure to obtain the 
best regression model, and at some point, personal 
judgment has to interfere. An analyst can make benefit of 
model building procedure such as “Stepwise method” or 
“Best subsets method”, nevertheless, comparing models’ 
parameters including “P-value” of the model and 
coefficients, the amount of reduced error, number of 
independent variables, standard error, adjusted and 
prediction coefficient of determination and VIF must be 
taken into account. 
 
 

4 RESULT 
 
In this section first, the same regression model that was 
reported by Knoeff et al. (2009) and used to improve the 
Sellmeijer’s original criterion is reproduced, and the 
shortcoming with their regression analysis is reviewed. 
Then, other alternative equations for the prediction of 
critical gradient are proposed based on the re-analysis of 
the SBW’s small-scale test data. 
 
4.1      Reproduction of regression model of Knoeff et al.  
 
Soil properties and critical hydraulic gradient of BEP small-
scale tests required for multiple regression analysis are 
collected from Sellmeijer et al. (2011). All five independent 
variables must be normalized dividing by their mean values 
summarized in Table 1. Although intrinsic permeability was 
used in Sellmeijer’s criterion, for building the regression 
model, hydraulic conductivity can also be used in 
calculation, since each independent variable is divided by 
its mean value, therefore, there would be no difference 
between intrinsic permeability and hydraulic conductivity. 

Table 2 and 3 show statistical parameters of the 
regression model and the explanatory powers or the 
weights of each five independent variables that were 
incorporated in the model as well as their P-values.  

It must be noticed that Knoeff et al. (2009) and 
Sellmeijer et al. (2011) have obtained different weights 
than the ones collected in Table 3 which was also 
mentioned by Van der Zee (2011). Most important is that 
the P-values of the coefficients are considerably greater 
than the significance level of 5%. In other words, based on 
the 38 sets of observation data, incorporating all five 
independent variables in the model would result in 
overfitting, therefore, obtaining a better model must be 
investigated. Although Knoeff et al. (2009) recommended 
not to use angularity and uniformity in the formula, 
removing the two variables from formula would change the 
explanatory power of other variables. This in turn requires 
performing the regression again which would adjust the 
weights of other three variables. The values of VIF for 
conductivity and grain size are also high which indicate 
these two variables are highly correlated and having both 
in the model may result in misleading prediction. 

 
4.2      Current research’s proposed criteria 
 
In the research for an improved regression model, the best 
subset selection approach was used. All possible 
combinations of independent variables are built and 
analysed. The best models are then picked out based on 
the comparison of the models’ statistical parameters. Table 
4 summarizes selected combinations of the five 
independent variables among several other possible 
combinations. Table 4, in fact shows only the two best ones 
for each possible number of variables. The cross sign 
under each variable indicates the one that is used in the 
model. The model highlighted in red are selected for further 
investigation and outcome comparison. In selection of the 
highlighted models, their statistical parameters were 
compared to all other available combinations whether put 
in Table 4 or not. Table 5 also summarizes the P-value of 



the model and coefficients as well as the VIF for 
coefficients. It is worth noticing that the other regression 
equations than models 3 and 6 were not selected despite 

their better statistical parameters, namely R2 or Radjusted
2  

(according to Table 4) because P-values of their 
coefficients were greater than the 5% acceptable 
significance level (according to Table 5). As examples 
models 5 and 7 in Table 4 can be mentioned. In a few of 
them such as the last model which incorporates all five 
variables, high VIF was observed representing 
multicollinearity. Equations 6 and 7 indicate the two 
proposed regression models based on the results of SBW’s 
small-scale tests. 
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For the models to be applicable for larger scales and taking 

particularly the effect of scale factor (
d70 

√K L
3 ) into account, the 

influence of each independent variable is empirically  
 

embedded in the Sellmeijer’s original criterion. Equations 8 
and 9 show the current research’s modified criteria in 
accordance with the two achieved regression models.  
 
 
 
Table 2. Reproduced regression model’s information 
  

P-value R2 Radjusted
2  Standard error 

1.22E-07       0.7        0.66 0.154 

 
 
Table 3. Reproduced model variable’s information 
 

 
𝑒𝛽0 (

RD

RDm
)β1 (

k

km
)β2 (

d70
d70 m

)β3 (
Cu
Cu m

)β4 (
KAS

KASm
)β5 

Eq. 3 (Sellmeijer): 

Weight -0.079 0.35 -0.35 0.4 0.13 -0.02 

Analysis of this study: 

Weight -0.9 0.418 -0.306 0.292 0.168 -0.025 

P-value - 0.060 0.067 0.319 0.405 0.903 

VIF - 4.070 16.780 14.430 2.650 1.200 

 
 
 
Table 4. Regression information of different combinations of independent variables by means of best subsets method 
 

Model number Number of variables R2 Radjusted
2  RPrediction

2  Standard error RD K D70 Cu KAS 

1 1 46.6  45.1       41.3 0.19448 X     

2 1 38.0  36.3       30.4 0.20949  X    

3 2 65.9  63.9       59.4 0.15767  X X   

4 2 63.1  61.0       57.4 0.16400 X X    

5 3 69.5  66.8       62.5 0.15117 X X X   

6 3 69.2  66.5       62.1 0.15183 X X  X  

7 4 70.3  66.7       61.8 0.15153 X X X X  

8 4 69.6  65.9       61.1 0.15317 X X X  X 

9 5 70.3  65.6       60.1 0.15384 X X X X X 

 
 
Table 5. Other statistical parameters of different regression models of Table 4  
 

Model 
number 

Model’s     

P-value  

P-value of coefficients VIF of coefficients 

  RD K D70 Cu KAS RD K D70 Cu KAS 

1 0.000 0.000     1.00     

2 0.000  0.000     1.00    

3 0.000  0.000 0.000    2.78 2.78   

4 0.000 0.000 0.000    1.14 1.14    

5 0.000 0.051 0.000 0.011   2.13 5.87 5.24   

6 0.000 0.000 0.001  0.013  1.14 1.21 1.07   

7 0.000 0.041 0.051 0.294 0.366  3.65 14.42 12.15 2.48  

8 0.000 0.070 0.000 0.013  0.732 2.24 6.45 5.89  1.13 

9 0.000 0.060 0.067 0.319 0.405 0.903 4.07 16.78 14.43 2.65 1.20 
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From now on for the ease of calling throughout the 
paper, Equations 8 and 9 are named model 3 and 6, 

respectively. In model 3, both variables, k  and d70, already 
existed in the original criterion which are being affected by 
the obtained weights in this research, while in model 6, the 
influences of RD and Cu are added to the criterion for the 
first time. 

The final model is built considering the scale factor 

(
d70 

√K L
3 ) itself as a variable along with the other five 

independent variables in the regression modelling 
procedure. In view of the fact that the scale factor plays the 
most important role in piping criterion for transition from 
small-scale to larger scales, incorporating it in the model 
might eliminate the need for its adjustment according to the 
original criterion. In this way, another regression model was 
built already incorporating the scale factor (Equation 10 
and model 10). When the scale factor is considered as one 
of the possible independent variables among other five 
variables, surprisingly, combination of scale factor and 
conductivity indicates comparable statistical parameter to 
the two proposed combinations. Table 6 shows the 
regression information of model 10. 
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Table 6. Regression information of model 10 
  

P-value R2 Radjusted
2  Standard error 

7.37E-09       0.66         0.64 0.158 

 
 
4.3 Precision of the models in prediction  
 
To indicate precision of the proposed models in 
comparison with the existing criteria, the percentage of 
error in prediction for each model and small-scale test is 
calculated. In order to have a tangible insight over the 
prediction outcomes of the models, absolute values of 
errors in prediction are summed (SoE) according to 
Equation 11, and an average value of error for 38 tests is 
calculated and summarized in Table 7.  
 

Table 7. Sum of error and its average for small-scale tests 
for the different models 
 

Criteria  (SoE)  Average  

Sellmeijer’s original criterion 5.004 0.132 

Sellmeijer's improved criterion 4.801 0.126 

Model 3 incorporating k, d70 (Eq. 8) 7.145 0.188 

Model 6 incorporating RD, k, Cu (Eq. 9) 5.650 0.149 

Model 10 incorporating k, Scale factor (Eq. 10) 2.057 0.054 

 
 

SoE =  ∑ Abs[(
Hc

L
)Measured i − (

Hc

L
)Prediction i]

i=n
i=1               [11] 

 
 

Compared to Sellmeijer’s original criterion and 
Sellmeijer’s improved criterion, model 10 reduces errors 
considerably and it predicts critical gradients more precise. 
Figures 3 and 4 demonstrate this fact clearly. While errors 
of the Sellmeijer’s improved criterion are scattered mostly 
between 0.1 to 0.2 (Figure 3c), errors of model 10 mostly 
distributed between -0.1 to 0.1 (Figure 4e), which is 
considerably lower. Regarding the other two proposed 
models, while multiple regression analysis of small-scale 
tests proposed two satisfactory equations (Eq. 6 and 7), 
their adjusted versions (models 3 and 6) poorly predict 
gradients for the small-scale (Figures 4a and 4c), though, 
overall prediction behavior of model 6 is comparable to the 
existing criteria of Sellmeijer.  

The last step for validation of a given model is to 
investigate the homogeneity of errors. The distribution of 
the errors must not follow a pattern, otherwise it means 
predictive information of the model leaked over into the 
errors. This can be checked by plotting measured gradient 
versus predicted gradient which are shown in Figures 3 
and 4. Data overlaying on the diagonal line of this plot 
represents normal distribution of errors. In Figure 3 (b and 
d), although no evident pattern of data scatter is observed 
for Sellmeijer’s original and improved criteria, the predicted 
gradients are greater than the measured ones in a non-
conservative manner. The same observation is valid for 
model 3 and 6 in Figure 4 (b and d). Conversely, no obvious 
pattern or biasness of the errors is observed for model 10, 
and the data are more tightly distributed around the 
diagonal line in the proposed model (Figure 4f). 
 
 
5 DISCUSSION  
 
It was demonstrated that the Sellmeijer’s widely accepted 
improved criterion could not be perfectly reproduced by the 
provided SBW’s small-scale test data. As was explained by 
Van der Zee (2011) the main source of discrepancy 
observed between the weights provided by Knoeff et al. 
(2011) or Sellmeijer et al. (2011) and the analysis  
performed by Van der Zee or in the present research is that 
they have kept erosion length constant to 34 cm for all tests 
in their analysis while the length of erosion varied between 
32.5 to 34.5 which led to obtain different critical gradients.  

Moreover, by re-analyzing of the SBW’s data in this 
study, three new regression models were developed 



 

among which two equations (Eq. 6 and 7) ended up to the 
development of two new adjusted models in accordance 
with the Sellmeijer’s original model: the first one being 
model 3, (Eq. 8) and the second one being model 6 (Eq. 
9). The third regression equation (Eq. 10) simply 
incorporated the scale factor and is designated as model 
10.  

The two regression equations of Eq. 6 and 7 can be 
ranked at the same level of effectiveness as model 10 in 
statistical term of view because of almost identical P-

value, R2 and standard error. Since these models do not 
take into account the scale factor, gradient prediction of 
larger scale tests cannot be relied on them. On the other 
hand, their corresponding adjusted criteria (models 3 and 
6) are not exactly fitted for the small-scale data. As a matter 
of fact, it is expected that implementing each of these four 
equations and models (Eq. 6 to 9) as a criterion for 
assessment of BEP may come with some shortages. On 
the contrary, the last proposed model (model 10) is more 

precise for small-scale, and having incorporated scale 
factor, makes it predict better for larger scale as well. 
However, this model was achieved only by analyzing the 
small-scale test data, hence, it is recommended that in the 
future research it is validated with larger scale test results 
and field data. It should be noted that to determine 
independent variables required for prediction of critical 
gradient for larger scale, each variable must be divided by 
its corresponding mean value for small-scale tests 
provided in Table 1. Furthermore, another achievement 
made with this model is the considerably fewer number of 
variables that it takes into account. Almost all the 
resistance factor, geometry factor, the effect of relative 
density, uniformity and angularity were excluded from the 
Sellmeijer’s improved criterion. Although the new simpler 
model requires to be further validated, it is evident from the 
results shown in Figure 3 and 4 that it yields better 
predictions.  

 
 

 
Figure 3. Plots of error versus measured gradient (a, c) and measured gradient versus predicted gradient (b, d) for the 

Sellmeijer’s original and improved criteria 
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Figure 4. Plots of error versus measured gradient (a, c, e) and measured gradient versus predicted gradient (b, d, f) for 

the three proposed criteria 
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Sellmeijer’s model relied on several parameters often 
difficult to assess and many times corelated. Also, Van 
Beek et al. (2019) demonstrated that the assumption of 
constant value of bedding angle for different particle 
diameter is incorrect. Therefore, reducing the number of 
variables ensures that only the most significant parameters 
are involved, reducing thus the negative effects of 
uncertainties related to the determination of several soil 
properties. 

It is noted that both Sellmeijer’s criteria and the 
proposed models in the current research are valid for 
prediction of critical gradient responsible for progression of 
backward erosion piping in a one-layer homogenous 
granular soil which may not be always the case in the field. 
Although several research has been carried out 
investigating the influence of heterogeneity on the critical 
gradient required for pipe progression, no such criterion 
has been developed so far. Further research is therefore 
required to better understand field conditions leading to 
piping. 
 
 
6 CONCLUSION 

  
The well-known Sellmeijer’s criterion that was improved by 
means of experimental and field tests and statistical tools 
was revisited in this paper. The statistical re-analysis of 
SBW’s small-scale data indicated that the weights obtained 
herein for independent variables were different than those 
obtained by Sellmeijer et al. (2011) because of using the 
variable erosion length of the tests in the regression 
analysis. In addition, it was demonstrated that Sellmeijer’s 
improved criterion was suffering from overfitting indicated 
by the greater P-value of the coefficients than the 
acceptable significance level. Hence, in this study, 
systematic multiple regression analysis of the same data 
helped developing alternative more compacted models for 
critical gradient prediction. As a result, three new 
regression equations were built. Two of them took into 
account the effect of k, d70 and RD, k, Cu, and the third one 
incorporated scale factor. 

The three equations were the best regression models 
that could be achieved by the SBW’s small-scale test data 
according to the P-value of their model and coefficients, 
standard errors so on. However, the first two equations 
were adjusted empirically in accordance with the 
formulation of Sellmeijer’s original criterion to ensure that 
they can predict the critical gradients of the larger scale 
tests. Comparison of sum of absolute error of the three 
proposed models (models 3, 6, and 10) with those of the 

Sellmeijer’s criteria indicated that model 10, which 
incorporates the scale factor, gives the best prediction 
results for the small-scale tests. Although equations 6 and 
7 were statistically better alternatives than the regression 
equation (Eq. 2) that Sellmeijer used to develop his model 
(Eq. 3), their prediction behavior with small-scale data did 
not product satisfactory results after implementation within 
models 3 and 6. Furthermore, the plot of measured 
gradients versus predicted gradients for the two Sellmeijer 
models and the three models proposed herein 
demonstrated the existence of bias in all models except for 
model 10. This is clearly shown in Figure 4f where the data 
are homogenously distributed around the diagonal line.   

The objective of proposing a new simpler model has 
been reached. Nevertheless, it needs to be validated for 
larger scale and field data.  
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